

Copyright 2002

An Introduction to Use Cases
Geri Schneider and Jason P. Winters

Wyyzzk, Inc.
Santa Clara, CA 95051

1 Abstract
Use cases, also referred to as user stories, enable

the functional requirements of a software system or
business process to be written from the software or
processes' point of view. This paper is a brief
introduction to use cases. The basics of writing a
good use case are described.

2 Introduction
For many decades, the software industry has

depended on a functional requirements specification
document to define the software to be developed.
Requirements in the document usually take a form
such as "The system shall do something.” Some
examples might be: "The system shall display all
numbers with 2 decimal places.” "The system shall
calculate all numbers to 4 decimal places of
accuracy." These requirements are explicit and easy
to test.

How the system works is difficult to determine.
If I am sitting in front of a computer, what is my
primary objective, secondary goal, etc? Use cases
were developed to write functional requirements in a
way that emphasizes how the system is to be used.

Ivar Jacobson began the preliminary work that led
to the development of use cases. In 1967, he
developed a new set of modeling concepts for the
development of large telecommunications switching
systems. Mr. Jacobson continued working on his
methodology during the 1970s and 1980s. Objectory
Process, his methodology of modeling concepts, was
released. Use cases were an integral part of that
methodology. Use cases were included in the
Unified Modeling Language standard, developed
during 1995-97.

Use cases have continued to increase in
popularity. They are used to write requirements in a
wide variety of applications. Compatible with any
software development process, they are prominent in
Unified Process, Objectory Process, and eXtreme
Programming, where they are called user stories.

The remainder of this paper focuses on the
writing of a good, basic use case. Only the text form

of the use case is considered. Use case diagramming
will not be shown. The text form can be done with a
number of diagrams. The interested reader may refer
to the list of resource books at the end of the paper
for more information about use cases and
diagramming use cases.

3 Definitions
Use cases describe the functional requirements of

the system from the point of view of system users.
A use case is a complete sequence of steps that

provides an actor with a result of value.
An actor is either a human or non-human system

user.
 A system is the object under development. This

could be software or a business process.

4 Determining your Audience
First, consider the objective of the use case before

beginning the writing stage. Determine who needs
the use case, how it will be used, and what will be
done with the case. This will help to write a use case
with the appropriate level of detail.

Different audiences have different needs for use
cases. Consider if the use cases are being written for
managers, users, or developers. Placing each
differing viewpoint in one document is not the most
feasible approach. Doing so creates a very large
document; smaller documents are easier to work
with. Secondly, numerous differing viewpoints will
be confusing to some readers and users.

Use cases are used for a variety of purposes after
being written. Consider various purposes when
determining the level of detail in the use case. Is the
use case being written to describe the basic
requirements of the system as part of a contract with
a customer? Will the use case be used to create
white-box test plans, black-box test plans, or both?
Will user manuals for software be created from use
cases? Will the use case be used to document new
corporate processes? Will software be developed
from use cases? If use cases will be serving these
purposes, more than one version of each use case is
necessary.

Copyright 2002

The audience should be kept in mind as the use
case is written. If you are uncertain whether
particular information should be included in the use
case, consider who will be reading the use case.
Then decide if those users need that information. If
they do, include the information. If they do not,
exclude certain information. However, all
information, whether included or excluded, should be
saved in a separate document or diagram.

5 The Basic Structure of a Use
Case

Each use case must include details outlining what
must be done to accomplish functionality. Basic
functionality, alternatives, error conditions, anything
that must be true before starting the use case or
exiting the use case must be considered.

A complete use case description may become
quite complicated. This is not something written at
the very beginning, but a description that evolves
over time. The use case is documented in several
sections for easier reading. Sections can be written
one at a time until the use case is complete. This
paper illustrates the most basic form of the use case.
Flow of events, preconditions, and postconditions are
included. Let’s look at the parts that make up a use
case in a little more detail.

5.1 Flow of Events
The primary part of the use case is the flow of

events. The flow of events is divided into two
sections: the basic path and the alternative path. We
will start writing the basic path by choosing the most
common sequence of steps for the use case. After
writing the basic path, alternatives and exceptions to
the use case can be added. These are the alternative
paths of the use case.

5.2 The Basic Path
The basic path is written on the assumption that

everything goes right. Neither bugs, nor errors exist;
it is a perfect world often called the happy day
scenario. One basic path is required for each use
case.

 The basic path is a series of simple declarative
statements listing the steps of a use case from the
actor’s point of view. A statement such as “The use
case begins when...,” designates the beginning.
Similarly, a phrase such as “The use case ends,”
signifies the end. At each step, assume everything is
correct. Pick the most common way of doing each
step.

Exhibit 5-1 illustrates an example of the basic
path for a use case in which a customer is placing an

order for products. Your objective may be to provide
software to be used by your customers to place an
order, and you want to include that information in the
use case. In this scenario, the use case would
resemble Exhibit 5-2.

Exhibit 5-1 Basic Path Example
Place Order Use Case
Flow of Events
Basic Path
1. The use case begins when the customer contacts
the company to place an order.
2. The customer supplies his or her name and
address.
3. The customer supplies product codes for the
products he or she wishes to order.
4. The company gives the customer a total amount
due.
5. The customer supplies credit card payment
information.
6. The company gives the customer an order
identifier and the use case ends.

Exhibit 5-2 Basic Path Software Example
Place Order Use Case
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. The customer enters a product code.
4. The system supplies a description and price.
5. The system adds the item price to the total.
6.The customer enters credit card payment
information.
7. The customer selects Submit.
8. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system.
9. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends.

The first use case allows the customer to order

multiple products. The second use case involves the
customer entering one product code. We need to
indicate repetition in this use case because the user
can enter more than one product on a single order.

Use repetition to repeat a step or a set of steps
multiple times. Indicate clearly where the repetition
starts and ends. Also clearly indicate how it will be
ended. It may end at the end of a set, or a
condition may cause the repetition to stop.

Repetition is shown with either a for statement or
a while statement. Either one will work; choose the
statement that is the easiest to read. Exhibit 5-3

Copyright 2002

shows repetition with the for statement. Exhibit 5-4
shows repetition with the while statement.

Exhibit 5-3 Repetition Example with "for"
Place Order Use Case
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. The customer enters product codes for products to
be ordered.
4. For each product code entered
 a) the system supplies a description and price
 b) the system adds the item price to the total.
end loop
5. The customer enters credit card payment
information.
6. The customer selects Submit.
7. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system.
8. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends.

Exhibit 5-4 Repetition Example with "while"
Place Order Use Case
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. While the customer enters product codes
 a) the system supplies a description and price
 b) the system adds the item price to the total.
end loop
4. The customer enters credit card payment
information.
5. The customer selects Submit.
6. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system
7. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends.

5.3 Alternative Paths
The basic path only handles the case in which

everything is correct. Alternatives and error
conditions must still be indicated within the use case.
Alternative paths are used for this purpose.

An alternative path is one that allows a different
sequence of events than that used for the basic path.
Alternative paths are used to show different choices a

user can make, error conditions, and things that can
happen at any time.

When a user is given a choice of one of several
options, the basic path is selected as the most likely
choice. The remaining choices are documented as
alternative paths.

Since the basic path assumes everything is
correct, alternative paths are used to document error
conditions. These alternative paths answer questions
such as: What could go wrong and what will we do
about it? What if a transaction is cancelled midway?
What is done in that situation?

Alternative paths are particularly useful for
illustrating potential occurrences at any time, such as,
a cancelled transaction, or accessing context-specific
help. For example, during the Place Order use case, a
customer may be allowed to cancel the order at any
time prior to submission.

One method for finding alternative paths is by
thumbing through the basic path line by line while
asking questions:

• Can another action be taken at this point?
• Could something go wrong at this point?
• Could specific behavior present itself at any time?

Categories are another method used to discover

alternatives. Ask if your particular use case needs
alternative paths of these types:

• An actor exits the application
• An actor cancels a particular operation
• An actor requests help
• An actor provides bad data
• An actor provides incomplete data
• An actor chooses an alternative way of performing
the use case
• The system crashes
• The system is unavailable

Once alternative paths for the use case have been

found, put the list of alternatives in the alternative
paths section, located in a separate section of the
document. This section of the document follows the
basic path (see Exhibit 5-5). To begin this section,
simply list each alternative and exception thought of.

Complex or important alternative paths also
require a sequence of steps detailing their behavior.
These can be written in the same way the basic path
was written. Select a readable style, check for
completeness and correctness, and apply a writing
style consistent with the primary scenarios.

Alternative paths can be written in a paragraph
format. Refer to the third alternative in which the
payment is not confirmed in example Exhibit 5-5.

Copyright 2002

Detailed alternatives may also be written using a
numbered list. (see Exhibit 5-6).

Simpler use cases can be documented with
alternatives in the basic path. More complex use
cases are easier to read if alternatives are written
separately. Approaches are frequently combined.
These include the placement of simple alternatives in
the basic path and more complex alternatives in the
alternative paths section. Step 3 of Exhibit 5-7 shows
an alternative in the basic path.

Exhibit 5-5 Place Order Use Case with an
Alternative Paths Section
Place Order Use Case
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. The customer enters product codes for products to
be ordered.
4. For each product code entered

a) the system supplies a description and price
b) the system adds the item price to the total.

end loop
5. The customer enters credit card payment
information.
6. The customer selects Submit.
7. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system.
8. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends.

Alternative Paths
• If any information in step 7 is incorrect, the system
will prompt the customer to correct the information.
• The customer can cancel the order at any time
before selecting Submit and the use case ends.
• If payment is not confirmed in step 8, the system
prompts the customer to either correct payment
information or cancel. If the customer chooses to
correct the information, return to step 5 in the Basic
Path. If the customer chooses to cancel, the use case
ends.
• Customer unable to login due to bad password or
username
• Product code does not match actual products
• Product is no longer available
• Customer pays by check
• Customer sends order by mail
• Customer phones in order
• The system crashes midway through placing the
order

• Customer unable to login due to system not
responding
• Order gets lost

Exhibit 5-6 Place Order Use Case Detailed
Alternative Paths Section
Alternative Paths
Alternative 1: Incorrect data
1. This alternative begins in step 7 of the basic path
once the system detects incorrect information.
2. The system prompts the customer to correct the
information.
3. The basic path continues with step 7.
Alternative 2: Cancel
1. At any time during the Place Order use case, the
customer may select cancel.
2. The system prompts the customer to verify the
cancel.
3. The customer selects OK and the use case ends.

Exhibit 5-7 Place Order Use Case with an
Alternative Paths Section
Place Order Use Case
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. If the customer enters only a zip code, the system
supplies the city and state.
4. The customer enters product code(s) for product(s)
to be ordered.
5. For each product code entered

a) the system supplies a description and price
b) the system adds the item price to the total.

end loop
6. The customer enters credit card payment
information.
7. The customer selects Submit.
8. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system.
9. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends.

Alternative Paths
Alternative 1: Incorrect data
1. This alternative begins in step 7 of the basic path
once the system detects incorrect information.
2. The system prompts the customer to correct the
information.
3. The basic path continues with step 7.
Alternative 2: Cancel
1. The customer may select cancel at any time during
the Place Order use case.

Copyright 2002

2. The system prompts the customer to verify the
cancel.
3. The customer selects OK and the use case ends.

How detailed should the alternatives be? A

complete sequence of steps could be written for each
alternative path; however, this is unnecessarily time-
consuming. In many cases, alternative paths will
vary from the basic path and from one another
incrementally. Instead of writing an entire sequence
of steps, note the variation in the alternative brief
description. Writing a complete set of detailed
descriptions requires time that could be used toward
building a system. There is no point in building your
whole system in a natural language, such as English.
There are no automatic English-to-Java translators!

5.4 Pre- and Postconditions
Now the use case flow of events has been written,

two sections remain to be completed. These sections
are the precondition and the postcondition.

Pre- and postconditions indicate what comes
before and after the use case. They tell what state the
system must be in at the start of the use case
(precondition), or what state the system must be in at
the end of the use case (postcondition). The
postcondition must be true regardless of

 which branch or alternative is followed for the
use case. Exhibit 5-8 provides an example of a
precondition and a postcondition for the Place Order
use case. Notice that the postcondition is not a
simple expression. Since the postcondition must be
true regardless of what happens, compound
conditions are frequently used for the use case
postcondition.

Exhibit 5-8 Pre- and Post Conditions
Place Order Use Case
Precondition: A valid user has logged into the
system.

Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. If the customer enters only the zip code, the system
supplies the city and state.
4. The customer enters product codes for the desired
products.
5. For each product code entered

a) the system supplies a description and price
b) the system adds the item price to the total.

end loop

6. The customer enters credit card payment
information.
7. The customer selects Submit.
8. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system. If any information is
incorrect, the system prompts the customer to correct
it.
9. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends. If payment is not confirmed,
the system will prompt the customer to correct
payment information or cancel. If the customer
chooses to correct the information, go back to step 6
in the Basic Path. If the customer chooses to cancel,
the use case ends.

Alternative Paths
Alternative 1: Cancel
1. At any time in the Place Order use case, the
customer may select cancel.
2. The system prompts the customer to verify the
cancel.
3. The customer selects OK and the use case ends.

Postcondition: If the order was not cancelled, it is
saved in the system and marked confirmed.

5.5 Who Initiates the Use Case
The use case initiator is usually - an actor or the

system. The Place Order use case is clearly started
by the customer actor. If we created a use case Get
Status on Order, it is less clear where it should start.
We could either have the customer always request
status, have the system send a message to the
customer when status changes, or both. Each of these
three are correct. It is important to be explicit as to
what is allowed in the use case.

6 Level of Detail
Many ask how much detail should be included in

the use case. This depends on the audience. We
have used up to three versions of a use case at
different levels of detail.

One level of use case that is quite useful is the
Business Process use case. Business process use
cases describe the processes a company uses to
satisfy the requests of the customers. A business
process use case can include the use of manual
processes, physical entities such as paper forms, and
software. The business process use case may also
indicate those inside the company who perform the
business processes.

A business process use case describes a complete
process from the point of view of a customer of the

Copyright 2002

company. It frequently looks like a sequence of
lower level use cases. It starts with a request from a
customer and ends with the fulfillment of the request.
Exhibit 6-1 is an example of this kind of use case.
The focus is on the order the things are done and
what department is responsible. Do not worry how
each department does its job. From the customer’s
point of view, this describes the entire use case from
the time an order is placed until the product arrives.

Exhibit 6-1 Order Products Use Case - Business
View
Flow of Events
Basic Path
1. The use case begins when the customer places an
order for products with the customer service
department.
2. The customer service department sends the
payment information for the order to the accounting
department.
3. The accounting department updates National
Widgets accounts and deposits the payments in the
bank.
4. The customer service department sends the order
to the warehouse department.
5. The warehouse department collects the items for
the order and sends them with the shipping address to
the shipping department.
6. The shipping department packages items with the
shipping address and sends the package through a
shipping company for delivery to the customer. The
use case ends.

This use case describes the complete process to

the customer. Interactions between different parts of
the company are also described. It is also good at
describing how the different parts of the company
interact. Let's now assume part of this use case will
be automated. More detail about software use is
required. Instead of putting the detail in this use
case, making it large and complex, select the steps
required for automation and place them into new
software use cases.

Software use cases describe how a user will
interact with specific software. A software level use
case only describes the use of software. Most of the
examples in this paper are software use cases that
describe the software from the point of view of the
actor who is a system user. This kind of use case is
the one most familiar to people, and is the most
common kind of use case written for a project.
Business process use cases show how all software
use cases work together to accomplish a larger task.

Exhibit 6-2 is an example of a software use case.
It is the same place order use case we have been
working with. Comparing it to the business process

use case in Exhibit 6-1, we see that it is steps 1 and 2
of exhibit 6-1 with more detail included. It is labeled
as a user view because it only includes information
known to the user.

Exhibit 6-2 Place Order Use Case - User View
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. If the customer enters only the zip code, the system
will supply the city and state.
4. The customer enters product codes for products to
be ordered.
5. For each product code entered

a) the system supplies a description and price
b) the system adds the price of the item to the

total.
end loop
6. The customer enters credit card payment
information.
7. The customer selects Submit.
8. The system verifies the information, saves the
order as pending, and forwards payment information
to the accounting system.
9. When payment is confirmed, the order is marked
confirmed, an order ID is returned to the customer,
and the use case ends.

Another level of detail of a software use case is

for a developer, who requires more information to
develop the system. The developer must write code
system requirements. The user view of the use case
leaves many questions unanswered. For example,
where will the system obtain city, and state
information when a zip code is supplied in Step 3 of
the Place Order Use Case? Will this information
appear in a table created by the developer, does it
exist in a company database, must software
containing this information be purchased, or will
this information be provided by the U.S. Post Office?
It is presumed in Step 5a, that the inventory system
will supply this information, but that should be
explicitly stated. What does verify the information
mean in Step 8? What is supposed to happen there?
What does payment is confirmed mean in Step 9?
What is supposed to happen there? Lastly, when and
how are the tax and shipping information
calculated?” Exhibit 6-3 is another version of Place
Order that answers these questions.

Much of the information contained here is of no
relevance to the customer. However, this use case
need not be shown to a customer. This is used by
the developers to write code. Most of the time we do
not write developer level use cases. Instead, this

Copyright 2002

information is documented in diagrams, such as
sequence diagrams.

Exhibit 6-3 Place Order Use Case - Developer
View
Flow of Events
Basic Path
1. The use case begins when the customer selects
Place Order.
2. The customer enters his or her name and address.
3. If the customer enters only the zip code, the system
will use the zip code to query the U.S. Post Office
online repository to get the city and state. The
system will add the city and state to the order.
4. The customer enters product codes for products to
be ordered.
5. For each product code entered

a) The system uses the product code to query the
inventory system software for a product description
and price. The system adds the description and price
to the order. The system queries the customer for the
quantity of the product. The customer enters a
quantity for the product.

b) The system adds the price of the item to the
subtotal of the order.
end loop
6. The customer enters credit card payment
information.
7. The customer selects Submit.
8. The system ensures all necessary data is entered,
which must include a complete shipping address,
credit card payment information, and at least one
product. The system saves the order as pending, and
forwards the payment information and subtotal to the
accounting system.
9. The accounting system calculates the tax and
shipping amounts, and returns a total for the order
along with an indication of success in accepting the
payment. The system marks the order confirmed,
returns the total and an order ID to the customer, and
the use case ends.

Whether or not a use case is complete depends on

the developer’s point of view. The Order Products
use case at the Business Process Level answered
questions regarding how parts of the company work
together, and in which order objectives must be
completed. From the point of view of managing the
process of ordering products, the Order Products use
case is complete. From the point of view of a
customer, the Order Products use case is missing
information with regards to placing an order. But a
correct level of detail is used in the Place Order use
case, describing the actor view of the software. From
the point of view of a developer, a version of Place

Order describing the developer view of the software
is preferential.

7 A Quick Review of the Use
Case

This is a good point in time to review the written
use cases. This section includes some simple things
to consider when first reviewing use cases.

Following is a very quick review used each time
while reviewing use cases. It is both simple and
catches a lot of errors.
1. How does the use case begin and who initiates

it? If the use case is for software, how does the
software know when the use case begins? If the
use case describes a business process, when does
that process start?

2. How does the use case end? What is the final
thing that happens?

3. If the use case produces data, does that data need
to be stored? Where?

4. If the use case uses data, where did the data
come from?

5. Have all actors in the use case text been
accounted for?

Here are some other things to look for. Each step

of the use case should be a simple, declarative
statement. By default, the steps will be in order by
time. What if the steps can occur in any order? If
this is the case, make it clear in the description. This
could be a simple statement at the beginning of the
use case that the steps can run concurrently. Or you
might state that some of the steps can happen in any
order.

Resist the temptation to become too detailed.
More detail can be added over time. At this point in
the process, we are collecting requirements, not doing
detailed analysis or design. On the other hand, the
use case needs to be complete. Be very clear on the
start and end points, and make sure the list of steps
generally cover everything needed to accomplish the
functionality of the use case.

You will find a large percentage of use cases start
and end with an actor. From our order-processing
system, we see that Place Order starts and ends with
the customer. A smaller number of use cases start
with an actor and end internally or start inside the
system and end with an actor. We have found this
convenient when dealing with time. For example, if
our order-processing system is automated to check
and place back-ordered items from a supplier once
each week, this would start internally and end with
the supplier actor.

By definition, use cases are written from the
actor’s point of view. Therefore, each step in the use

Copyright 2002

case should be visible to or easily surmised by the
actor.

Use cases are a communication tool. They are
effective only to communicate information about
how the system works to the reader. It is important
to consider who will be reading the use cases. Will it
be end users, marketing specialists, developers, or
management? Whoever it is, they have to be able to
understand the use cases. If they don’t, the use cases
need to be rewritten.

Another correctness check is to look at each step
of the basic path, one by one. For each step, ask
yourself, “What is the most likely thing to occur
here?” That is what should be written for that
particular step.

Don’t worry about getting the use cases perfect.
The nature of the process is to be iterative; keep
looking back over completed work and refine it to
reflect knowledge learned. The use cases will
improve as your understanding of the system
improves.

On the other hand, enough information must be
included in each use case to be able to determine
whether a particular use case handles a particular
functionality.

8 A Use Case Template
Only the most basic parts of a use case have been

covered in this paper. There are other kinds of
information that may be included in a use case.
Below is a sample detail template for a use case.
Every section does not need to be included. If your
use cases are not this complex, not all sections will be
used. Additional sections may be helpful. That is
fine. This is a sample given as a starting point. If it
works as is, use it; otherwise, modify as needed.

Use Case Name
Brief Description

<Usually a paragraph or less. May include the
priority and status of this use case.>
Context Diagram

<A small use case diagram showing this use case
and all of its relationships.>
Preconditions

<A list of conditions that must be true before the
use case starts.>
Flow of Events

<A section for the basic path and each alternative
path.>
Postconditions

<A list of conditions that must be true when the
use case ends, regardless of which scenario are
executed.>
Subordinate Use Cases Diagram

<A small use case diagram showing the
subordinate use cases of this use case.>
Subordinate Use Cases

<A section for each subordinate use case with its
flow of events.>
Activity Diagram

<An activity diagram of the flow of events, or
some significant or complex part of the flow of
events.>
View of Participating Classes

<A class diagram showing the classes that
collaborate to implement this use case.>
Sequence Diagrams

<One or more sequence diagrams for the basic
path and alternatives.>
User Interface

<Sketches or screen shots showing the user
interface. Possibly storyboards.>
Business Rules

<A list of the business rules implemented by this
use case.>
Special Requirements

<A list of the special requirements that pertain to
this one use case. For example - timing, sizing, or
usability.>
Other Artifacts

<This can include references to the subsystem the
use case belongs to, an analysis model, a design
model, code, or test plans.>
Outstanding Issues

<A list of questions pertaining to this use case
that needs to be answered.>

9 Other Documents Required
Other documents are frequently developed along

with the use cases. These include non-functional
requirements, a glossary of terms, a data definition
document describing the format and validation rules
for data elements, and guidelines for the user
interface. You may also want to maintain a
document that lists outstanding issues or questions
that need to be addressed.

Sections of the use case document are frequently
moved into other documents. For example, you may
want all the user interface screen shots together in a
document separate from the use cases. Or you may
want to collect all the special requirements together
in one document, rather than scattering them
throughout the use case documents. It is good to
have a template for these other documents as well, so
everyone knows what kind of information to include
in the document.

Requirements such as timing, sizing,
performance, and security are frequently called non-
functional requirements to distinguish them from the

Copyright 2002

use cases that are the functional requirements. It is
particularly important to have a template for a non-
functional requirements document for the team to
understand what is meant by non-functional
requirements. The template will also help you find
all the non-functional requirements in your system.

Exhibit 9-1 Non-functional Requirements
Template

Usability

<What is known about the users of this system?
Are they computers, power users, others, or a
combination of these? How easy must this system be
to use?>
System

<What kind of system will this software operate
on? Is it necessary to port to multiple platforms?
Must the software support multiple simultaneous
users?>
Security

<What are the needs for secure login or secure
transmission of data?>
Persistence

<Do we have any persistent data? Are there any
requirements on the database to use?>
Integration with Other Systems

<Does this software have to integrate with other
software or hardware?>
Error Detection/ Handling/ Reporting

<Are errors allowed? What is a reasonable error
rate? What are our requirements for prevention,
detection, handling, and reporting of errors?>
Redundancy

<Are there any needs for redundant data,
subsystems, processes, or hardware?>
Performance

<Are there any restrictions on how slow or fast
the system or any part of it will run?>
Size

<Are there any restrictions on the size of the
system or any part of it?>
Internationalization

<Does the software have to support any character
set worldwide or only some of them? What
information must be translated?>

Another document we recommend is a glossary of

terms. Don’t assume every term is known,
understood, or that each term is defined the same.
Write a glossary accessible to all team members.

Exhibit 9-2 Sample Glossary of Terms

Accounting System

A software system that tracks customer accounts,
processes accounts receivable and processes accounts
payable.
Manager

Anyone who gets reports from the Order
Processing system.
Security

The need to control whom has access to our
software and databases.

Another very useful document is the data

definition document. This is a place to record
information about the format of the data. For
example, assume that a name is defined to be 50
characters. If that information is placed in the use
cases, and the name is changed to 75 characters,
every use case will have to be reviewed to look for a
name with that number of characters to be changed.
Instead, put the size of a name in the data definition
document. If someone reading the use case wants to
know the size of a name, they can look up the
information in the data definition document. If the
size of the name changes, you only have to change
the information in one place, the data definition
document.

Exhibit 9-3 Sample Data Definitions

City

An alphabetic string of no more than thirty
characters. Strings are allowed to include a period
and an apostrophe.
Product Price

A currency type field with two decimal places.
Tax

A currency type field calculated to four decimal
places, but rounded to two decimal places.

Finally, a user interface document may be needed.

One kind of user interface document is guidelines
and standards. This can include requirements such as
every screen must include an exit button, or the
standard font for applications is 12 point Arial. Also
included may be a user interface design document
including screen shots and navigation information.

10 Conclusion
This paper has provided a brief introduction to

use cases. Some history and rationale for use cases
have been considered, followed by a demonstration
of how to write a very basic form of a use case. A
very basic use case consists of preconditions, a flow
of events including the basic path and any number of
alternative paths, and postconditions. A template was
then provided to show other parts of a use case and

Copyright 2002

templates for other documents that should be
included along with use cases. The ability of use
cases to be documented with diagrams was
mentioned next. The interested reader is referred to
the Reference section for books with more
information about use cases.

10.1 Acknowledgment
This paper is based on Chapters 3, 4, 6, and 7

from Applying Use Cases [1].

10.2 References
1. Schneider, Geri, and Jason P. Winters, Applying

Use Cases, Second Edition: A Practical Guide,
Addison-Wesley, Boston, MA, 2001. ISBN 0-
201-70853-1.

2. Jacobson, Ivar, Magnus Christerson, Patrik
Jonsson, Gunnar Övergaard, Object-Oriented
Software Engineering, ACM Press, NY 1992.
ISBN 0-201-54435-0.

3. Fowler, Martin with Kendall Scott, UML
Distilled Second Edition, Addison-Wesley,
Menlo Park, CA, 2000. ISBN 0-201-65783-X.

4. Booch, Grady, James Rumbaugh, and Ivar
Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, Menlo Park, CA, 1999.
ISBN 0-201-57168-4.

5. OMG Unified Modeling Language Specification
Version 2.0,, Object Management Group, 2004.

	An Introduction to Use Cases
	Abstract
	Introduction
	Definitions
	Determining your Audience
	The Basic Structure of a Use Case
	Flow of Events
	The Basic Path
	Alternative Paths
	Pre- and Postconditions
	Who Initiates the Use Case

	Level of Detail
	A Quick Review of the Use Case
	A Use Case Template
	Other Documents Required
	Conclusion
	Acknowledgment
	References

