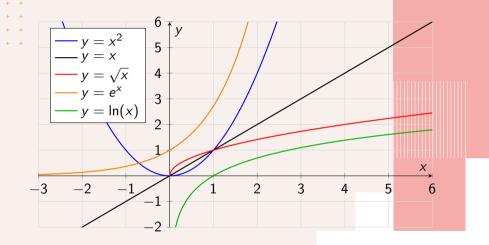


Chapitre 1 - Equivalents

Remise à Niveau

Différente vitesse de croissance



À quoi ça sert les équivalents?

Les équivalents servent à comparer les fonctions entre elles.

- Dire qu'une fonction temps plus vite vers l'infini qu'une autre,
- Permet de calculer des limites.

🎖 À retenir

On rappelle les formes indéterminées:

$$+\infty-\infty, \quad 0\times\infty, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 1^{\infty}$$

Definition: Voisinage

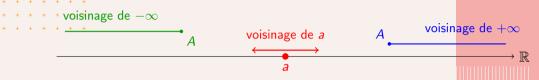
on tintervalle ouvert centré en a. Cela signifie qu'il existe $\ell > 0$ tel que :

$$]a-\ell,a+\ell[\subset V.$$

Autrement dit, V contient tous les réels "assez proches de a".

- ▶ On dit que V est un **voisinage de** $+\infty$ s'il contient un intervalle de la forme $]A, +\infty[$ pour un certain $A \in \mathbb{R}$. Cela signifie que V contient tous les réels "suffisamment grands".
- ▶ On dit que V est un **voisinage de** $-\infty$ s'il existe $A \in \mathbb{R}$ tel que $]-\infty, A[\subset V]$. Cela signifie que V contient tous les réels "suffisamment petits".

Illustration: Voisinage



Point considéré	Ensemble V	Voisinage ? Pourquoi ?
a = 1]0.5, 1.5[Oui, intervalle centr <mark>é en 1</mark>
a = 1]0,2[\{1}	Non, car <i>V</i> ne contie <mark>nt pas 1</mark>
$+\infty$	$]1000,+\infty[\cup\{0\}$	Oui, contient $]A, +\infty[$
$-\infty$	$]-\infty,0[$	Oui, contient $]-\infty, A[$

Définition: Négligeable

On dit que f est **négligeable devant** g au voisinage d'un point a (ou en a), s'il vérifie la propriété suivante :

$$\forall \varepsilon > 0, \quad \exists V \in \mathcal{V}(a), \ \forall x \in V, \quad |f(x)| \le \varepsilon |g(x)|.$$

On note:

$$f(x) = \underset{x \to a}{o}(g(x))$$
 ou $f = \underset{a}{o}(g)$.

Proposition

Soient f et g deux fonctions définies dans un voisinage de a (sauf peut-être en a), et supposons que $g(x) \neq 0$ quand x est proche de a (sauf peut-être en a). Alors :

$$f(x) = \underset{x \to a}{o}(g(x)) \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Relations classiques à connaitre:

Soit
$$\alpha^{\dagger} > 0$$
, $\beta \in \mathbb{R}$.

* * * 1.
$$x^{\alpha} = o(x^{\beta})$$
 si et seulement si $\alpha < \beta$.

2.
$$x^{\alpha} = \underset{x \to 0}{o} (x^{\beta})$$
 si et seulement si $\alpha > \beta$.

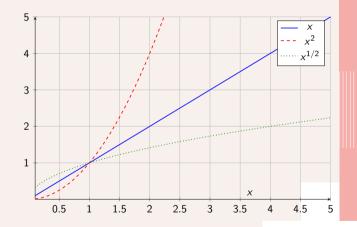
3.
$$f(x) = \underset{x \to a}{o}(1)$$
 si et seulement si $\underset{x \to a}{\lim} f(x) = 0$.

4.
$$(\ln x)^{\beta} = o_{x \to +\infty}(x^{\alpha}).$$

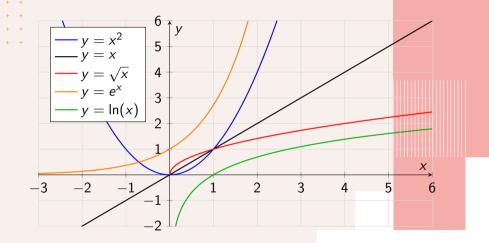
5.
$$x^{\beta} = \underset{x \to +\infty}{o} (e^{\alpha x}).$$

6.
$$|\ln x|^{\beta} = o_{x \to 0^{+}} \left(\frac{1}{x^{\alpha}}\right)$$
.

Croissances Comparées (I)



Croissances Comparées (II)



Operations sur les négligeables

Proposition

Soient f, g, h, φ et ψ des fonctions définies dans un voisinage de a, sauf peut-être en a. On suppose que g, h et ψ ne s'annulent pas dans un voisinage de a, sauf peut-être en a. Soit $\lambda \in \mathbb{R}$.

- 1. Si f = o(h) et si g = o(h) alors $\lambda f + g = o(h)$.
- 2. Si f = o(g) alors fh = o(gh).
- 3. Si f = o(g) et $\varphi = o(\psi)$ alors $f \varphi = o(g\psi)$.

Parmi les fonctions suivantes, laquelle a la croissance la plus rapide lorsque

$$x \rightarrow +\infty$$
?

- + + + + + + + + + In x ×100
 - $\Box e^{x}$
 - X^{X}

 - Quelles affirmations sont vraies ?
- $\lim_{x \to +\infty} \frac{\ln x}{\frac{x}{x}} = +\infty$ $\lim_{x \to +\infty} \frac{e^{x}}{x^{n}} = +\infty \text{ pour tout entier } n$ $\lim_{x \to +\infty} \frac{x^{2}}{e^{x}} = +\infty$ $\lim_{x \to +\infty} \frac{x^{2}}{e^{x}} = +\infty$

 - $\lim_{x\to 0^+} x \ln x = 0$

Parmi les fonctions suivantes, laquelle a la croissance la plus rapide lorsque

$$x \rightarrow +\infty$$
?

- + + + + + + + + + In x ×100

 - $\Box e^{x}$
 - $\times x^{x}$
 - Quelles affirmations sont vraies ?

- $\lim_{x \to +\infty} \frac{\ln x}{\frac{x}{x}} = +\infty$ $\lim_{x \to +\infty} \frac{e^{x}}{x^{n}} = +\infty \text{ pour tout entier } n$ $\lim_{x \to +\infty} \frac{x^{2}}{e^{x}} = +\infty$ $\lim_{x \to +\infty} \frac{x^{2}}{e^{x}} = +\infty$

 - $\lim_{x\to 0^+} x \ln x = 0$

Exercice

- On prend $f(x) = x^3$ et $g(x) = e^{2x}$. Que vaut $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$?
 - □ 0
 - \Box $+\infty$
 - \Box 1
 - ☐ La limite n'existe pas
 - Soit $\alpha > 0$. Quelle est la bonne écriture de la relation de négligeabilité entre x^{α} et e^{x} quand $x \to +\infty$?

 - $\Box e^{x} = o(x^{\alpha})$
 - $x^{\alpha} \sim e^{x}$
 - $\Box x^{-} \sim e^{-}$

Exercice

- On prend $f(x) = x^3$ et $g(x) = e^{2x}$. Que vaut $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$?
 - ⊠ 0
 - \Box $+\infty$
 - 1
 - ☐ La limite n'existe pas
 - Soit $\alpha > 0$. Quelle est la bonne écriture de la relation de négligeabilité entre x^{α} et e^{x} quand $x \to +\infty$?
 - $\boxtimes x^{\alpha} = o(e^{x})$
 - $\Box e^{x} = o(x^{\alpha})$
 - $x^{\alpha} \sim e^{x}$

Parmi les limites suivantes, laquelle est correcte ?

$$\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$$

- $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$ $\lim_{x \to +\infty} \frac{e^x}{n!} = 0 \text{ pour tout entier } n$
 - $\lim_{x \to +\infty} \frac{x^{x}}{e^{x^{2}}} = +\infty$ $\lim_{x \to +\infty} \frac{x^{2}}{e^{x^{2}}} = 0$

 - ▶ Vrai ou Faux: si $f(x) = o(\ln(x))$ quand $x \to +\infty$, alors, $f(x) \xrightarrow{} 0$
 - ☐ Vrai
 - □ Faux

Parmi les limites suivantes, laquelle est correcte ?

$$\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$$

- $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$ $\lim_{x \to +\infty} \frac{e^x}{n!} = 0 \text{ pour tout entier } n$
 - $\lim_{x \to +\infty} \frac{x^{x}}{e^{x^{2}}} = +\infty$ $\lim_{x \to +\infty} \frac{x^{2}}{e^{x^{2}}} = 0$

 - ▶ Vrai ou Faux: si $f(x) = o(\ln(x))$ quand $x \to +\infty$, alors, $f(x) \xrightarrow{} 0$
 - □ Vrai

Définition: équivalent

On dit que f est **équivalente** à g au voisinage de a et on note $f \underset{x \to a}{\sim} g$ ou $f(x) \underset{x \to a}{\sim} g(x)$ s'il existe une fonction ε et $V \in \mathcal{V}(a)$ tels que

$$\forall x \in V, \quad f(x) = g(x)(1 + \varepsilon(x)), \quad \text{avec } \lim_{x \to a} \varepsilon(x) = 0.$$

Proposition

$$f(x) \underset{x \to a}{\sim} g(x)$$
 si et seulement si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$.

Exemple -

Un polynôme est équivalent à son terme de plus haut degré.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_p x^p$$

* *avec $a_n \neq 0$ et $p < \ldots < n$. Alors, lorsque $x \to +\infty$, on a :

$$f(x) \sim a_n x^n$$
.

Preuve. On factorise f(x) par x^n :

$$f(x) = x^{n} \left(a_{n} + a_{n-1}x^{-1} + a_{n-2}x^{-2} + \ldots + a_{p}x^{p-n} \right).$$

On en déduit :

$$\frac{f(x)}{a_n x^n} = 1 + \frac{a_{n-1}}{a_n} x^{-1} + \frac{a_{n-2}}{a_n} x^{-2} + \ldots + \frac{a_p}{a_n} x^{p-n}.$$

Or tous les termes avec x^k pour k < 0 tendent vers 0 lorsque $x \to +\infty$, donc :

$$\lim_{x \to +\infty} \frac{f(x)}{a_n x^n} = 1,$$

ce qui signifie que $f(x) \sim a_n x^n$ lorsque $x \to +\infty$.

Propriétés des équivalents

Proposition

Soit $a \in \mathbb{R}$. Pour toutes fonctions f , g et h , la relation $\sim v$ vérifie les propriétés

† † †suivantes :

1.
$$f(x) \underset{x \to a}{\sim} f(x)$$
.

2.
$$f(x) \underset{x \to a}{\sim} g(x) \Rightarrow g(x) \underset{x \to a}{\sim} f(x)$$
.

3.
$$\left(f(x) \underset{x \to a}{\sim} g(x) \text{ et } g(x) \underset{x \to a}{\sim} h(x)\right) \Rightarrow f(x) \underset{x \to a}{\sim} h(x).$$

4. Soit
$$\ell \in \mathbb{R}^*$$
. On a $f(x) \underset{x \to a}{\sim} \ell \iff \lim_{x \to a} f(x) = \ell$.

5.
$$f \sim g \Longrightarrow \left(\lim_{x \to a} g(x) = \ell \in \overline{\mathbb{R}} \Rightarrow \lim_{x \to a} f(x) = \ell\right)$$
.

6.
$$f \sim g \implies f$$
 et g sont de même signe au voisinage de a.

Operations sur les équivalents

+ + Proposition

On considère des fonctions définie dans un voisinage de a, sauf peut-être en a, et ne s'annulant pas dans un voisinage de a, sauf peut-être en a. Alors, on a les propriétés suivantes:

- 1. Produit : si $f \sim g$ et $\varphi \sim \psi$, alors $f \varphi \sim g \psi$.
- 2. Quotient : si $f \sim g$ et $\varphi \sim \psi$, alors $\frac{f}{\varphi} \sim \frac{g}{\psi}$.
- 3. Composition à droite : si $f \sim g$ et si $\lim_{x \to x_0} \varphi(x) = a$, alors $f(\varphi(x)) \sim g(\varphi(x))$.

Exercice

- 1. Soient $f(x) = x^2 + 1$ et $g(x) = -x^2 x$. Donner un équivalent de f, de g et de g.
 - 2. Calculer $\lim_{x\to 0} \frac{\ln(1+x)}{x}$.

En déduire un équivalent au voisinage de 0 des fonctions :

$$ightharpoonup x \mapsto \ln(1+x)$$
,

$$ightharpoonup x \mapsto \ln(1-x),$$

$$ightharpoonup x \mapsto \ln(1-x^2).$$

3. Soient
$$f(x) = x^2 + x$$
 et $g(x) = x^2$. A-t-on $f \sim_{+\infty} g$? A-t-on $e^f \sim_{+\infty} e^g$?

Solution

- 1. $f \sim x^2$, et $g \sim x^2$, mais on a f + g = x, donc il n'est pas vrai que f + g = x, $f + g = x^2 + x^2 = 2x$.
 - 2. On a $\lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{x\to 0} \frac{\ln(1+x) \ln(1)}{x-0} = \ln'(0) = 1.$

On en déduit les équivalents suivants

►
$$\ln(1-x^2) \sim -x^2$$
,

3. On a
$$f(x) \sim x^2$$
 et $g(x) \sim x^2$, mais on a $\frac{e^{f(x)}}{e^{g(x)}} = e^x \to +\infty$, donc on n'a pas $e^f \sim e^g$.

Composition à gauche

Proposition

 † Soient † f † g définies dans un voisinage de a, sauf peut-être en a, et ne s'annulant pas dans un voisinage de a, sauf peut-être en a. On suppose que f \sim_a g. Alors :

- 1. Valeur absolue : $|f| \sim_a |g|$.
- 2. Puissance : pour tout $\alpha > 0$, si g est strictement positive au voisinage de a, alors $f^{\alpha} \sim_a g^{\alpha}$. En particulier, $\sqrt{f} \sim_a \sqrt{g}$.
- 3. Logarithme, sous conditions :
 - (a) $Si \lim_{x\to a} f(x) = \ell \in [0, +\infty]$ et $si \ell \neq 1$, alors $\ln f(x) \sim_{x\to a} \ln g(x)$.
 - (b) $Si \lim_{x\to a} f(x) = 1$, alors $\ln f(x) \sim_{x\to a} (f(x) 1)$.
- 4. Exponentielle, sous conditions : si $\lim_{x\to a} (f(x) g(x)) = 0$, alors $e^{f(x)} \sim_{x\to a} e^{g(x)}$.

Application

Soit $f(x) = \sqrt{x^4 + x^2 + 1}$. Donner un équivalent de f et de $\ln f$ au voisinage de $+\infty$.

1) Équivalent de f. Par croissances comparées, $x^4 + x^2 + 1 \sim_{x \to \infty} x^4$. Par le point *Puissance* de la proposition on obtient

$$f(x) \sim x^2$$
 quand $x \to +\infty$.

2) Équivalent de In f. Comme $f(x) \sim x^2$ et $f(x) \to +\infty$ lorsque $x \to +\infty$, on peut appliquer le point *Logarithme* (3a) de la proposition avec $g(x) = x^2$ dont la limite vaut $+\infty \neq 1$. Il vient

$$\ln f(x) \sim_{+\infty} \ln(x^2) = 2 \ln x.$$

Solution Exercice 1.4

Pour $\stackrel{\cdot}{x} \stackrel{\cdot}{\to} +\infty$ on a $1/x \to 0$. On s'appuie sur les deux équivalents $\sin(u) \sim_{u \to 0} u$ et $e^v - 1 \sim_{v \to 0} v$, qui s'obtiennent grace au taux d'accroissement. En conséquence, par composition,

$$e^{\sin(1/x)} - 1 \sim \sin(\frac{1}{x}) \sim \frac{1}{x}$$
.

Donc

$$rac{e^{\sin(1/x)}-1}{x}\simrac{1/x}{x}=rac{1}{x^2}\xrightarrow[x
ightarrow+\infty]{}0.$$

Ainsi la limite vaut 0.

Solution Exercice 1.4

$$\textbf{2.} \ f(x) = \frac{\sin(\pi x)}{\ln x}, \quad x \to 1.$$
 Posons $x = 1 + h$ avec $h \to 0$. Alors

$$\sin(\pi x) = \sin(\pi(1+h)) = \sin(\pi+\pi h) = -\sin(\pi h).$$

Pour $h \to 0$ on a $\sin(\pi h) \sim \pi h$. De plus $\ln x = \ln(1+h) \sim h$. Ainsi

$$\frac{\sin(\pi x)}{\ln x} = \frac{-\sin(\pi h)}{\ln(1+h)} \sim \frac{-\pi h}{h} = -\pi.$$

Donc

$$\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x} = -\pi.$$

