

Chapitre 2 - Développements limités

Remise à Niveau

Table of Contents

Définitions et premières propriétés

Formule de Taylor et Premiers exemples

Opérations sur les développements limités

Développements limités généralisés

Applications

Table of Contents

† Définitions et premières propriétés

Formule de Taylor et Premiers exemples

Opérations sur les développements limités

Développements limités généralisés

Applications

Définition

Soit $n \in \mathbb{N}$. On dit que f admet un **développement limité à l'ordre** n en a s'il existe un polynôme à coefficients réels P_n de degré au plus n tel que, pour tout $x \in I$,

$$f(x) = P_n(x-a) + \mathop{o}_{x \to a} ((x-a)^n).$$

On définit également la notion de **développement limité à l'ordre** n en $\pm \infty$. On suppose que $\pm \infty$ est une borne de I. On dit que f admet un développement limité à l'ordre n en $\pm \infty$ s'il existe un polynôme à coefficients réels P_n de degré au plus n c'est-à-dire

$$f(x) = P_n\left(\frac{1}{x}\right) + \underset{x \to \pm \infty}{o}\left(\left(\frac{1}{x}\right)^n\right).$$

♀ À retenir

L'ordre d'un développement limité se lit sur le reste.

Exemple -

$$\frac{1}{x} + \frac{1}{x} + \frac{1}{x} + \frac{1}{x} = 2x + o_{x\to 0}(x^7)$$
 est un DL₇ de f en 0.

- 2. $g(x) = x^4 + o_{x \to 0}(x^2)$ est un DL₂ de g en 0. En effet, $x^4 = o_{x \to 0}(x^2)$, donc $g(x) = o_{x \to 0}(x^2)$.
- 3. $k(x) = 1 + 2(x-3) (x-3)^4 + o_3((x-3)^4)$ est un DL₄ de k en 3.

4.
$$\varphi(x) = 2 - \frac{2}{x} + \frac{3}{x^5} + \sum_{x \to -\infty}^{\infty} \left(\left(\frac{1}{x} \right)^6 \right)$$
 est un DL₆ de φ en $-\infty$.

À quoi ça sert?

Supposons que f admet un DL_0 en a, c'est-à-dire

$$f(x) = a_0 + \underset{x \to a}{o}(1).$$

En faisant tendre x vers a, on obtient $\lim_{x\to a} f(x) = a_0$. Ainsi, on peut prolonger f par continuité en a en posant $f(a) = a_0$.

➤ Supposons maintenant que f est continue en a et admet un développement limité à l'ordre 1 en a:

$$f(x) = a_0 + a_1(x - a) + o_1(x - a).$$

On a vu que $a_0 = f(a)$. On obtient donc

$$\frac{f(x)-f(a)}{x-a}=a_1+\mathop{o}\limits_{x\to a}(1)\xrightarrow[x\to a]{}a_1.$$

La fonction f est donc dérivable en a, avec $f'(a) = a_1$.

À quoi ça sert?

Proposition

Soit $f: I \mapsto \mathbb{R}$, avec $a \in I$.

- 1. f admet un DL_0 en a si et seulement si f est continue en a.
- 2. f admet un DL_1 en a si et seulement si f est dérivable en a.

Contre exemple: DL sans dérivabilité de second ordre

Soit la fonction

$$f: I \to \mathbb{R}, \quad x \mapsto \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

Alors, f admet un DL₂ en 0 mais que f n'est pas deux fois dérivable en 0.

Développement limité d'ordre 2 en 0.

Pour $x \neq 0$, on a $|f(x)| = |x^3 \sin(1/x)| \le |x|^3$, donc $f(x) = o(x^2)$ quand $x \to 0$.

Ainsi, f admet un développement limité d'ordre 2 en 0, puisque:

$$f(x) = 0 + 0x + 0x^2 + o(x^2).$$

Contre exemple: DL sans dérivabilité de second ordre

Dérivabilité en 0.

Pour $x \neq 0$, on a :

$$f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right).$$

On calcule la dérivée en 0 :

$$\lim_{x\to 0}\frac{f(x)-f(0)}{x}=\lim_{x\to 0}x^2\sin\left(\frac{1}{x}\right)=0.$$

Donc f est dérivable en 0, avec f'(0) = 0. Finalement, on a montré:

$$f'(x) = \begin{cases} 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

Contre exemple: DL sans dérivabilité de second ordre

Non dérivabilité de f' en 0.

On étudie :

$$\frac{f'(x) - f'(0)}{x} = \frac{f'(x)}{x} = 3x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right).$$

Le terme $3x \sin(1/x)$ tend vers 0, mais $\cos(1/x)$ n'a pas de limite (oscillations). Donc la limite de ce quotient n'existe pas et f' n'est pas dérivable en 0.

Conclusion:

La proposition 2.1.1 ne se généralise pas pour $n \ge 2$.

Unicité du DL

Theorem

Si f admet un DL_n en a alors le couple (P_n, ε) est unique. Le polynôme P_n s'appelle la partie principale de f d'ordre n en a, on la note $P_n(f)$.

Proof.

On suppose qu'il y en a 2, et on montre que la différence est forcément 0.

Définition valuation

+ + Definition

Soit une fonction f admettant un DL_n en a de partie principale $P_n(f)$. On appelle **valuation** de f et on note val(f), la valuation de $P_n(f)$, c'est-à-dire la plus petite puissance de x apparaissant dans le polynôme $P_n(f)$.

Example

Soit $f(x) = -x + x^2 + o_{x\to 0}(x^3)$. Alors, la partie principale est $-x + x^2$, l'ordre est 3 et la valuation est 1.

Exercice

La fonction $f_1(x) = \sin(x)$ admet le **DL**

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5).$$

Quelle est la valuation de la fonction $f_1(x)$?

- □ A) 0
- □ B) 1
- □ C) 2
- □ D) 3

La fonction $f_1(x) = \sin(x)$ admet le DL

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5).$$

Quelle est la valuation de la fonction $f_1(x)$?

- □ A) 0
- ☑ B) 1
- □ C) 2
- □ D) 3

Exercice

Soit $f(x) = e^x - 1 - x$. On considère son développement limité à l'ordre 3 en 0. Quelle est sa partie principale ?

$$\Box$$
 A) $x + \frac{x^2}{2} + \frac{x^3}{6}$

□ B)
$$x^2 + \frac{x^3}{6}$$

$$\Box$$
 C) $x + \frac{x^2}{2}$

$$\square$$
 D) $\frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$

Exercice

Soit $f(x) = e^x - 1 - x$. On considère son développement limité à l'ordre 3 en 0. Quelle est sa partie principale ?

$$\Box$$
 A) $x + \frac{x^2}{2} + \frac{x^3}{6}$

$$\square$$
 B) $x^2 + \frac{x^3}{6}$

$$\Box$$
 C) $x + \frac{x^2}{2}$

$$\Box$$
 D) $\frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$

On donne

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^7).$$

Quel est l'ordre de ce développement limité ?

- □ A) 0
- □ B) 6
- □ C) 7
- □ D) 8

On donne

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^7).$$

Quel est l'ordre de ce développement limité ?

- □ A) 0
- □ B) 6
- ☑ C) 7
- ¬ **-** \ -

DL et parité de la fonction

Proposition

Soit I un intervalle symétrique par rapport à l'origine, $f: I \to \mathbb{R}$. On suppose que f admet un DL_n en 0, $n \ge 0$.

- 1. f admet un DL_p en 0, pour tout entier p < n.
- 2. Si f est paire, alors $P_n(f)$ ne comporte que des puissances paires.
- 3. Si f est impaire, alors $P_n(f)$ ne comporte que des puissances impaires.

Proof.

On remplace f(-x) = f(x) ou f(-x) = -f(x) dans le DL, on voit que les coefficients s' annulent.

Table of Contents

+ + + + + + +

Définițions et premières propriétés

Formule de Taylor et Premiers exemples

Opérations sur les développements limités

Développements limités généralisés

Applications

DL d'un polynôme

$$f(x) = a_0 + a_1 x + \ldots + a_p x^p$$
, avec $p \in \mathbb{N}, \ a_p \neq 0$.

Alors f admet un DL en 0 à tout ordre. En effet, si $n \ge p$, on prend comme partie principale

$$P_n(f)(x) = a_0 + a_1x + \ldots + a_px^p,$$

qui est un polynôme de degré $\leq n$ et le reste est nul. Si n < p, alors

$$x^{n}(a_{n+1}x+\ldots+a_{p}x^{p-n})=\underset{x\to 0}{o}(x^{n})$$

et on peut donc écrire

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n + \underset{x \to 0}{o}(x^n).$$

Somme géométrique

 \uparrow Pour tout $x \in]-1,1[$,

$$1 + x + x^{2} + \ldots + x^{n} = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x},$$

avec

$$\frac{x^{n+1}}{1-x} = \underset{x\to 0}{o}(x^n).$$

On en déduit

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \underset{x \to 0}{o}(x^n),$$

et de même,

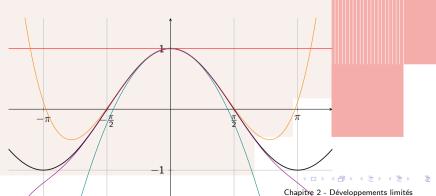
$$\frac{1}{1+x} = 1 - x + x^2 - \ldots + (-1)^n x^n + \underset{x \to 0}{o}(x^n).$$

Formule de Taylor

Theorem

* * *Soit* $f: I \to \mathbb{R}$ de classe C^n sur I, avec $n \in \mathbb{N}^*$. Soit $a \in I$. Alors, f admet un DL_n en f a f a f a f forme

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + o((x-a)^n).$$



3blue1brown fait de super vidéos

https://youtu.be/3d6DsjIBzJ4?si=ThF1y-kMzTCWQ4vW

(Sous-titres français disponibles)

Exemple -

La fonction exponentielle, de classe C^{∞} sur \mathbb{R} , admet un DL à tout ordre en 0. Par la formule de Taylor-Young, pour tout $n \in \mathbb{N}$,

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \ldots + \frac{x^{n}}{n!} + \underset{x \to 0}{o}(x^{n}),$$

et

$$e^{-x} = 1 - x + \frac{x^2}{2!} + \ldots + \frac{(-1)^n x^n}{n!} + \underset{x \to 0}{o}(x^n).$$

Exemple -

Les fonctions cosinus et sinus, de classe \mathcal{C}^{∞} sur \mathbb{R} , admettent un DL à tout ordre en 0.

Par la formule de Taylor-Young, pour tout $n \in \mathbb{N}$,

$$\cos x = 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{o} (x^{2n+1}),$$

$$\sin x = x - \frac{x^3}{3!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{o} (x^{2n+2}).$$

Notez bien que pour la fonction cosinus, on a un DL à l'ordre 2n + 1 qui ne comporte que des puissances paires, tandis que pour la fonction sinus, le DL à l'ordre 2n + 2 ne comporte que des puissances impaires.

Exemple

Soit $\alpha \in \mathbb{R}$. La fonction $f_{\alpha} : x \mapsto (1+x)^{\alpha}$, de classe \mathcal{C}^{∞} sur]-1,1[, admet un DL à tout ordre en 0. Par la formule de Taylor-Young, pour tout $n \in \mathbb{N}$,

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n+\underset{x\to 0}{\circ}(x^n).$$

Exercice

Utiliser les développements limités précédent pour en déduire les DL à l'ordre 2 en 0 des fonctions suivantes:

$$x\mapsto \sqrt{1+x}$$
 et $x\mapsto \cosh(x)=rac{e^x+e^{-x}}{2}$.

Par 3. de l'exemple précédent avec $\alpha = \frac{1}{2}$,

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \underset{x\to 0}{o}(x^2).$$

En additionnant le DL de e^x et e^{-x} , on a:

$$\frac{e^{x}+e^{-x}}{2}=1+\frac{x^{2}}{2!}+\ldots+\frac{x^{2n}}{(2n)!}+\mathop{o}\limits_{x\to 0}(x^{2n+1}),$$

Table of Contents

+ + + + + + +

Definițions et premières propriétés

Formule de Taylor et Premiers exemples

Opérations sur les développements limités

Développements limités généralisés

Applications

Combinaison linéaire: OK

Theorem

*Soit I un intervalle tel que $0 \in I$ ou 0 est une extrémité de I. Soient $n \in \mathbb{N}$ et $f,g:I \to \mathbb{R}$ deux fonctions admettant un DL_n en 0. Soient $\lambda,\mu \in \mathbb{R}$. Alors $\lambda f + \mu g$ admet un DL_n en 0 et

$$P_n(\lambda f + \mu g) = \lambda P_n(f) + \mu P_n(g).$$

Example

Les fonctions cosh et sinh, étant de classe C^{∞} sur \mathbb{R} , admettent un DL à tout ordre en 0 donné pour tout $n \in \mathbb{N}$ par :

$$\cosh x = \frac{e^{x} + e^{-x}}{2} = 1 + \frac{x^{2}}{2!} + \dots + \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{o} (x^{2n+1}),$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2} = x + \frac{x^{3}}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{o} (x^{2n+2}).$$

Produit: OK

Theorem

Soit $f,g:I\to\mathbb{R}$ deux fonctions définies au voisinage de 0 et $n\in\mathbb{N}$. Supposons que f et g admettent un DL_n en 0.

Alors le produit fg admet un DL_n en 0 et $P_n(fg)$ s'obtient en tronqua<mark>nt à l'ordre n le polynôme $P_n(f) \cdot P_n(g)$.</mark>

Exemple

Déterminons le DL₅ en 0 de la fonction

$$f: x \mapsto \ln(1+x)(\sinh x - \sin x).$$

Cette fonction est de classe C^{∞} sur $]-1,+\infty[$, donc elle admet un DL de tout ordre en 0.

On sait que

$$\ln(1+x) \underset{x\to 0}{\sim} x,$$

donc, en multipliant les DL, tous les termes du DL de

$$sinh x - sin x$$

seront multipliés au moins par x. Pour obtenir un DL_5 de f en 0, il suffit donc de partir d'un DL_4 de

$$\sinh x - \sin x$$
.

Exemple -

que

On obtient alors

Chapitre 2 - Développements limités

 $f(x) = \left(x - \frac{x^2}{2} + \underset{x \to 0}{o}(x^2)\right) \left(\frac{x^3}{3} + \underset{x \to 0}{o}(x^4)\right)$

 $\sinh x - \sin x = \frac{x^3}{3} + o_{x \to 0}(x^4) \sim_{x \to 0} \frac{x^3}{3}.$

 $ln(1+x) = x - \frac{x^2}{2} + o_0(x^2).$

Ainsi, pour obtenir un DL₅ de f en 0, il suffit de partir d'un DL₂ de $\ln(1+x)$. On a vu

 $=\frac{x^4}{3}-\frac{x^5}{6}+o_0(x^5).$

Solutions

Exercice

+ + Déterminer le DL_2 en 0 de $f(x) = e^x \sqrt{1-x}$.

On utilise les développements usuels en 0.

$$e^{x} = 1 + x + \frac{x^{2}}{2} + o(x^{2}), \qquad \sqrt{1 - x} = 1 - \frac{x}{2} - \frac{x^{2}}{8} + o(x^{2}).$$

En multipliant et ne gardant que les termes jusqu'à l'ordre x^2 :

$$f(x) = \left(1 + x + \frac{x^2}{2} + o(x^2)\right) \left(1 - \frac{x}{2} - \frac{x^2}{8} + o(x^2)\right)$$
$$= 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2).$$

Solutions

+ + Exercice

Déterminer le DL₅ en 0 de
$$f(x) = \frac{x(\sinh x - \sin x)}{1+x}$$
.

On commence par le développement des fonctions hyperbolique et trigonométrique :

$$sinh x = x + \frac{x^3}{6} + \frac{x^5}{120} + o(x^5), \qquad sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5).$$

En faisant la différence les termes en x et en x^5 se compensent:

$$\sinh x - \sin x = \frac{x^3}{3} + o(x^5),$$

Donc

$$x(\sinh x - \sin x) = \frac{x^4}{3} + o(x^5).$$

Solutions

On divise ensuite par 1+x. En utilisant l'expansion

$$\frac{1}{1+x}=1-x+x^2+o(x^2),$$

(on n'a besoin ici que des deux premiers termes pour obtenir jusqu'à x^5), on obtient

$$f(x) = \left(\frac{x^4}{3} + o(x^5)\right) \left(1 - x + x^2 + o(x^2)\right)$$
$$= \frac{x^4}{3} - \frac{x^5}{3} + o(x^5).$$

Ainsi

$$f(x) = \frac{x(\sinh x - \sin x)}{1 + x} = \frac{x^4}{3} - \frac{x^5}{3} + o(x^5) \quad (x \to 0).$$

Composition: OK

Theorem

Soit I et J deux intervalles tels que $0 \in I$, $0 \in J$. Soit $f: I \to J$, $g: J \to \mathbb{R}$ deux fonctions et $n \in \mathbb{N}$. Supposons que f(0) = 0 et que f et g admettent un DL_n en 0.

Alors la composée $g \circ f$ admet un DL_n en 0 et $P_n(g \circ f)$ s'obtient en tronquant à l'ordre n le polynôme $P_n(g) \circ P_n(f)$.

 † †

On commence par développer $\sin x$:

$$\sin x = x - \frac{x^3}{6} + o(x^4).$$

Ainsi

$$e^{\sin x} = e^{x - \frac{x^3}{6} + o(x^4)}.$$

On peut écrire :

$$e^{\sin x} = e^x \cdot e^{-x^3/6 + o(x^4)}$$
.

D'une part,

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + o(x^{4}).$$

+ + + + + + +

D'autre part,

$$e^{-x^3/6+o(x^4)} = 1 - \frac{x^3}{6} + o(x^4).$$

On multiplie les deux développements :

$$e^{\sin x} = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)\right) \left(1 - \frac{x^3}{6} + o(x^4)\right)$$
$$= 1 + x + \frac{x^2}{2} + \left(\frac{1}{6} - \frac{1}{6}\right)x^3 + \left(\frac{1}{24} - \frac{1}{6}\right)x^4 + o(x^4).$$

Donc

$$e^{\sin x} = 1 + x + \frac{x^2}{2} - \frac{x^4}{8} + o(x^4).$$

2. Déterminons le DL₄ en 0 de $g(x) = e^{\cos x}$.

 O_n développe cos x:

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4).$$

Ainsi

$$e^{\cos x} = e^{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)} = e \cdot e^{-x^2/2 + x^4/24 + o(x^4)}.$$

Développons le second facteur :

$$e^{-x^2/2+x^4/24+o(x^4)} = 1 - \frac{x^2}{2} + \frac{1}{24}x^4 + \frac{1}{2}\left(\frac{x^2}{2}\right)^2 + o(x^4). = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^4}{8} + o(x^4)$$
$$= 1 - \frac{x^2}{2} + \frac{x^4}{6} + o(x^4).$$

Donc

$$e^{\cos x} = e\left(1 - \frac{x^2}{2} + \frac{x^4}{6} + o(x^4)\right).$$

Quotient: Attention

🖓 À retenir

Pour obtenir le DL en \boldsymbol{a} d'un quotient, on cherche toujours à se ramener à une fonction du type

$$x\mapsto \frac{1}{1+u(x)}$$
, avec $u(a)=0$,

et on compose avec le DL de

$$\frac{1}{1+u}=1-u+u^2-\ldots+(-1)^nu^n+\mathop{o}_{u\to 0}(u^n).$$

DL de Tangente

Déterminons le DL_5 de tan en 0.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \underset{x \to 0}{o}(x^5),$$

et

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \underset{x \to 0}{o}(x^5).$$

Posons

$$u = -\frac{x^2}{2!} + \frac{x^4}{4!} \xrightarrow[x \to 0]{} 0,$$

avec $u \sim -x^2/2$ quand $x \to 0$, donc $o_{u \to 0}(u^2) = o_{x \to 0}(x^4)$ et $x o_{u \to 0}(u^2) = o_{x \to 0}(x^5)$.

DL de Tangente

On écrit alors

$$\frac{\sin x}{\cos x} = \left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) \left(1 - u + u^2\right) + \underset{x \to 0}{o}(x^5)$$

$$= \left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) \left(1 + \frac{x^2}{2!} - \frac{x^4}{4!} + \left(-\frac{x^2}{2!} + \frac{x^4}{4!}\right)^2\right) + \underset{x \to 0}{o}(x^5)$$

$$= \left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) \left(1 + \frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^4}{4}\right) + \underset{x \to 0}{o}(x^5)$$

$$= \left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) \left(1 + \frac{x^2}{2!} + \frac{5x^4}{24}\right) + \underset{x \to 0}{o}(x^5)$$

$$= x + \frac{x^3}{3} + \frac{2x^5}{15} + \underset{x \to 0}{o}(x^5).$$

On étudie les deux fonctions au voisinage de 0.

1)
$$f_1(x) = \frac{e^x - 1 - x}{\cos x - 1}$$

 $f_1(x) = \frac{e^x - 1 - x}{\cos x - 1}.$ Développons numérateur et dénominateur en 0 :

$$e^{x} - 1 - x = \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + o(x^{4}), \qquad \cos x - 1 = -\frac{x^{2}}{2} + \frac{x^{4}}{24} + o(x^{4}).$$

On factorise $x^2/2$:

$$f_1(x) = \frac{\frac{x^2}{2} \left(1 + \frac{x}{3} + \frac{x^2}{12} + o(x^2) \right)}{\frac{x^2}{2} \left(-1 + \frac{x^2}{12} + o(x^2) \right)} = \frac{1 + \frac{x}{3} + \frac{x^2}{12} + o(x^2)}{-1 + \frac{x^2}{12} + o(x^2)}.$$

On inverse le dénominateur en écrivant

$$\frac{1}{-1 + \frac{x^2}{12} + o(x^2)} = -1 \cdot \frac{1}{1 - \frac{x^2}{12} + o(x^2)} = -\left(1 + \frac{x^2}{12} + o(x^2)\right).$$

* En multipliant les deux séries on obtient, jusqu'à l'ordre 2,

$$f_1(x) = -\left(1 + \frac{x}{3} + \frac{x^2}{12}\right)\left(1 + \frac{x^2}{12}\right) + o(x^2) = -1 - \frac{x}{3} - \frac{x^2}{6} + o(x^2).$$

Ainsi f_1 admet bien un développement limité en 0 et on a :

$$\frac{e^{x}-1-x}{\cos x-1}=-1-\frac{x}{3}-\frac{x^{2}}{6}+o(x^{2}) \quad (x\to 0).$$

2) DL de
$$f_2(x) = \frac{e^x}{\cos x - 1}$$
.
Remarquons d'abord que

$$\cos x - 1 \sim -\frac{x^2}{2}$$
 quand $x \to 0$.

Donc $\cos x - 1$ s'annule d'ordre 2 en 0 et $f_2(x)$ diverge (tend vers $\pm \infty$) quand $x \to 0$.

Par conséquent f_2 n'admet pas de DL au sens usuel (Taylor) en 0 (pas de développement fini en puissances non négatives).

Complément sur 2.)

On développe d'abord le dénominateur :

On en déduit
$$\frac{1}{\cos x - 1} = -\frac{2}{x^2} \frac{1}{1 - \left(\frac{x^2}{12} - \frac{x^4}{360} + \cdots\right)}$$

$$= -\frac{2}{x^2} \left(1 + \left(\frac{x^2}{12} - \frac{x^4}{360} + \cdots\right) + \left(\frac{x^2}{12} - \frac{x^4}{360} + \cdots\right)^2 + \cdots\right)$$

$$= -\frac{2}{x^2} \left(1 + \frac{x^2}{12} - x^4 \left(\frac{1}{144} - \frac{1}{360}\right) + \cdots\right)$$

Donc finalement.

$$\frac{1}{\cos x - 1} = -\frac{2}{x^2} \left(1 + \frac{x^2}{12} - \frac{x^4}{240} + \cdots \right) = -\frac{2}{x^2} - \frac{1}{6} - \frac{x^4}{120} + \cdots$$

Chapitre 2 - Développements limités

Complément sur 2.)

D'autre part,

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + o(x^{4})$$

$$\frac{1}{\cos x - 1} = -\frac{2}{x^{2}} - \frac{1}{6} - \frac{x^{2}}{120} + o(x^{4})$$

En multipliant, on obtient le développement limité généralisé :

$$\frac{e^{x}}{\cos x - 1} = -\frac{2}{x^{2}} - \frac{2}{x} + \left(-1 - \frac{1}{6}\right) + x\left(-\frac{2}{6} - \frac{1}{6}\right) + x^{2}\left(-\frac{2}{24} - \frac{1}{12} - \frac{1}{120}\right) + o(x^{2})$$

$$= -\frac{2}{x^{2}} - \frac{2}{x} - \frac{7}{6} - \frac{x}{2} - \frac{7}{40}x^{2} + o(x^{2}).$$

Intégration : OK

Theorem

* *Soit*I *un* intervalle tel que $0 \in I$. Soit $f: I \to \mathbb{R}$ une fonction continue, $n \in \mathbb{N}$.

*Supposons que f admet un DL_n en 0 du type

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n + \underset{x \to 0}{o}(x^n).$$

Alors toute primitive F de f sur I admet un DL_{n+1} en 0 de la forme

$$F(x) = F(0) + a_0x + a_1\frac{x^2}{2} + \ldots + a_n\frac{x^{n+1}}{n+1} + \underset{x\to 0}{o}(x^{n+1}).$$

NB: La constante d'intégration de la fonction en 0 est nécessairement F(0) par continuité.

Exemple

La fonction $F: x \mapsto \ln(1+x)$ étant de classe \mathcal{C}^{∞} sur $]-1,+\infty[$, elle admet un DL à tout ordre en 0. De plus, pour tout $x \in]-1,+\infty[$ et tout $n \in \mathbb{N}$,

$$F'(x) = \frac{1}{1+x} = 1 - x + x^2 - \ldots + (-1)^n x^n + \underset{x \to 0}{o}(x^n).$$

En intégrant ce DL, on obtient

$$\ln(1+x) = \ln(1+0) + x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^n \frac{x^{n+1}}{n+1} + \underset{x \to 0}{\circ} (x^{n+1}),$$

soit plus simplement

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^n \frac{x^{n+1}}{n+1} + \underbrace{o}_{x \to 0}(x^{n+1}).$$

Exemple

La fonction Arctan est de classe \mathcal{C}^{∞} sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, donc elle admet un DL à tout ordre en 0. De plus, pour tout $x\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ et tout $n\in\mathbb{N}$,

$$\operatorname{Arctan}'(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 - \ldots + (-1)^n x^{2n} + \underset{x \to 0}{o}(x^{2n+1}).$$

En intégrant ce DL, on obtient

$$Arctan x = Arctan(0) + x - \frac{x^3}{3} + \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + \underset{x \to 0}{o} (x^{2n+2}),$$

soit

$$Arctan x = x - \frac{x^3}{3} + \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + \underset{x \to 0}{o}(x^{2n+2}).$$

Dérivation: JAMAIS!

♀ À retenir

En général, il est interdit de dériver un DL.

Table of Contents

Definițions et premières propriétés

Formule de Taylor et Premiers exemples

Opérations sur les développements limités

Développements limités généralisés

Applications

Definition DLG

Soit $n \in \mathbb{N}$. On dit que f admet un **développement limité généralisé à l'ordre** n en f a f s'il existe f en f tel que f a demet un f a f and f are f and f and f and f and f are f and f and f and f are f and f and f are f and f and f are f and f are f

$$f(x) = \frac{a_0}{(x-a)^p} + \frac{a_1}{(x-a)^{p-1}} + \ldots + a_p + a_{p+1}(x-a) + \ldots + a_{n+p}(x-a)^n + o_{n+p}(x-a)^n$$

On définit également la notion de **développement limité généralisé à l'ordre** n en $\pm \infty$. On dit que f admet un DLG_n en $\pm \infty$ s'il existe $p \in \mathbb{N}^*$ tel que la fonction $x \mapsto \frac{f(x)}{x^p}$ admette un DL_{n+p} en $\pm \infty$. On obtient alors

$$f(x) = a_0 x^p + a_1 x^{p-1} + \ldots + a_p + \frac{a_{p+1}}{x} + \ldots + \frac{a_{n+p}}{x^n} + \underset{x \to \pm \infty}{o} \left(\left(\frac{1}{x} \right)^n \right).$$

Exemple

On considère

$$f: x \mapsto xe^{\frac{2x}{x^2-1}}$$
 au voisinage de $\pm \infty$.

On cherche un DLG_2 en $\pm\infty$ de f. On a

$$\frac{2x}{x^2 - 1} = \frac{2}{x} \frac{1}{1 - \frac{1}{x^2}} = \frac{2}{x} \left(1 + \frac{1}{x^2} + \underset{x \to \pm \infty}{o} \left(\frac{1}{x^2} \right) \right) = \frac{2}{x} + \frac{2}{x^3} + \underset{x \to \pm \infty}{o} \left(\frac{1}{x^3} \right).$$

Cet exposant tends vers 0 lorsque x tends vers l'infini, on doit donc considérer un DL de l'exponentielle en 0.

$$e^{\frac{2x}{x^2-1}} = 1 + \frac{2}{x} + \frac{2}{x^3} + \frac{1}{2} \frac{4}{x^2} + \frac{1}{6} \frac{8}{x^3} + \underset{x \to \pm \infty}{o} \left(\frac{1}{x^3}\right)$$
$$= 1 + \frac{2}{x} + \frac{2}{x^2} + \frac{10}{3x^3} + \underset{x \to \pm \infty}{o} \left(\frac{1}{x^3}\right)$$

On obtient donc

$$f(x) = x + 2 + \frac{2}{x} + \frac{10}{3x^2} + \underset{x \to \pm \infty}{o} \left(\frac{1}{x^2}\right).$$

Table of Contents

+ + + + + + +

Définitions et premières propriétés

Formule de Taylor et Premiers exemples

Opérations sur les développements limités

Développements limités généralisés

Applications

Calcul de limite

Etudier l'existence de la limite en 0 de

$$x \mapsto \frac{\ln(1+\sin x) - \tan x}{\sin x - \tan x}.$$

On a

$$\sin x = x - \frac{x^3}{6} + \underset{x \to 0}{o}(x^3)$$
 et $\tan x = x + \frac{x^3}{3} + \underset{x \to 0}{o}(x^3)$,

donc

$$\sin x - \tan x = -\frac{x^3}{2} + \underset{x \to 0}{o} (x^3) \underset{x \to 0}{\sim} -\frac{x^3}{2}$$

Calcul de limite

Etudier l'existence de la limite en 0 de

$$x \mapsto \frac{\ln(1+\sin x) - \tan x}{\sin x - \tan x}.$$

De plus,
$$\ln(1 + \sin x) = \ln\left(1 + x - \frac{x^3}{6} + \underset{x \to 0}{o}(x^3)\right) = x - \frac{x^2}{2} + \underset{x \to 0}{o}(x^2)$$
, donc

$$\ln(1+\sin x) - \tan x \underset{x\to 0}{\sim} -\frac{x^2}{2}.$$

Ainsi,

$$\frac{\ln(1+\sin x) - \tan x}{\sin x - \tan x} \sim \frac{-x^2/2}{-x^3/2} = \frac{1}{x}.$$

On en déduit que

$$\lim_{x\to 0^+}\frac{\ln(1+\sin x)-\tan x}{\sin x-\tan x}=+\infty, \text{ et } \lim_{x\to 0^-}\frac{\ln(1+\sin x)-\tan x}{\sin x-\tan x}=-\infty.$$

Calcul de limite

Comme on ne peut en général pas additionner les équivalents, pour obtenir l'équivalent d'une somme, il suffit d'écrire le DL. **Un équivalent de la somme est alors le premier terme non nul du DL**.

P À retenir

On ne somme pas les équivalents, mais on peut sommer les DLs.

Tangente et position relative d'une courbe

 \uparrow \downarrow Soit \uparrow une fonction admettant un développement limité à l'ordre $n \geq 2$ en 0 :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \underset{x \to 0}{o} (x^n).$$

On rappelle que l'équation de la tangente à la courbe de f au point d'abscisse 0 est alors donnée par :

$$y = f(0) + f'(0)x = a_0 + a_1x.$$

Pour étudier la position de la courbe par rapport à sa tangente, on examine le signe de

$$f(x) - (a_0 + a_1 x)$$
 au voisinage de 0.

Exemple

Soit $f(x) = e^{\sin x}$. Déterminons l'équation de sa tangente en 0 et la position relative de la courbe par rapport à cette tangente.

On commence par développer :

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5),$$

puis

$$f(x) = e^{\sin x} = e^{x - \frac{x^3}{6} + \frac{x^5}{120}} = 1 + x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3).$$

On en déduit :

$$f(0) = 1$$
, $f'(0) = 1$, donc la tangente en 0 a pour équation $y = 1 + x$.

La position relative est donnée par :

$$f(x) - (1+x) = \frac{x^2}{2} - \frac{x^3}{6} + o(x^3),$$

ce qui montre que la courbe est au-dessus de sa tangente pour x proche de 0.

Branches infinies et asymptotes

On note \mathcal{C}_f la courbe représentative de la fonction f:

$$\mathcal{C}_f = \{(x, f(x)) \mid x \in \mathcal{D}_f\}.$$

Definition

On dit que C_f admet une **branche infinie** lorsque l'une des deux coordonnées x ou y = f(x) tend vers $\pm \infty$.

Definition (Asymptote et Position relative)

Soient f et g deux fonctions définies au voisinage de a (fini ou infini). On dit que C_f admet C_g pour **asymptote** au voisinage de a si :

$$\lim_{x\to a}(f(x)-g(x))=0.$$

- ▶ Si $f(x) g(x) \ge 0$ au voisinage de a, alors C_f est **au-dessus** de C_g .
- ▶ Si $f(x) g(x) \le 0$ au voisinage de a, alors C_f est **en dessous** de C_g .

A retenir

La position relative de f par rapport à g est donnée par le signe du terme dominant dans f(x) - g(x). Si $a_{p+1} \neq 0$, ce terme est $\frac{a_{p+1}}{x}$.

On étudie au voisinage de $\pm\infty$:

$$f(x) = xe^{\frac{2x}{x^2 - 1}}$$

À l'aide d'un DLG :

$$f(x) = x + 2 + \frac{2}{x} + \frac{10}{3x^2} + o\left(\frac{1}{x^2}\right),$$

donc

$$f(x)-(x+2)\sim\frac{2}{x}\to 0.$$

La droite d'équation y = x + 2 est donc une **asymptote oblique** à la courbe au

Exemple

A retenir

La position relative de f par rapport à g est donnée par le signe du terme dominant dans f(x)-g(x). Si $a_{p+1}\neq 0$, ce terme est $\frac{a_{p+1}}{x}$.

$$f(x) - (x+2) = xe^{\frac{2x}{x^2-1}} - (x+2) \sim \frac{2}{x} \to 0.$$

Comme $\frac{2}{x} > 0$ pour $x \to +\infty$ et < 0 pour $x \to -\infty$, on a :

- $ightharpoonup \mathcal{C}_f$ est **au-dessus** de son asymptote pour $x \to +\infty$,
- $ightharpoonup C_f$ est **en dessous** pour $x \to -\infty$.

