

Chapitre 3 - Réduction des endomorphismes

Remise à Niveau

Table of Contents

Valeurs propres, vecteurs propres

Recherche des valeurs propres et des vecteurs propres

Exemple complet de diagonalisation

Applications

Table of Contents

Valeurs propres, vecteurs propres

Recherche des valeurs propres et des vecteurs propres

Exemple complet de diagonalisation

Application:

Exemple

On s'intéresse à une suite couplée:

$$\begin{cases} x_{n+1} = 2x_n - 2y_n \\ y_{n+1} = 2x_n - 3y_n \end{cases}$$

Nous pouvons ré-écrire ce système sous la forme :

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} \text{ donc } \begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix}^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

- Application possible de cette suite: $(x_n)_{n\in\mathbb{N}}$ le nombre de lapins, $(y_n)_{n\in\mathbb{N}}$ le nombre de loups,
 - plus il y a de lapins, plus il y a de lapins
 - plus il y a de loups, moins il y a de loups
 - le nombre de loups a un effet négatif sur le nombre de lapins
 - le nombre de lapins un un effet positif sur le nombre de loups

Comment calculer la puissance de la matrice?

Supposons qu'on trouve une base \mathcal{B} dans laquelle la matrice devient diagonale:

$$A = \left(P_{\mathcal{B} \to \mathcal{B}_c} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} P_{\mathcal{B}_c \to \mathcal{B}} \right)$$

Alors, si on calcule la puissance, comme $P_{\mathcal{B}_c \to \mathcal{B}} = P_{\mathcal{B} \to \mathcal{B}_c}^{-1}$, on a:

$$A^{n} = \left(P_{\mathcal{B} \to \mathcal{B}_{c}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_{c}}^{-1} \right)^{n}$$

$$= \left(P_{\mathcal{B} \to \mathcal{B}_{c}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_{c}}^{-1} \right) \times \left(P_{\mathcal{B} \to \mathcal{B}_{c}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_{c}}^{-1} \right)$$

$$\times \cdots \times \left(P_{\mathcal{B} \to \mathcal{B}_{c}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_{c}}^{-1} \right)$$

$$= \left(P_{\mathcal{B} \to \mathcal{B}_{c}} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}^{n} P_{\mathcal{B} \to \mathcal{B}_{c}}^{-1} \right) = \left(P_{\mathcal{B} \to \mathcal{B}_{c}} \begin{bmatrix} \lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n} \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_{c}}^{-1} \right)$$

Valeurs et vecteurs propres pour l'exemple

- Supposons qu'un oracle nous donne deux vecteurs $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ et $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - ► Remarquons d'abord que la nouvelle base vérifie :

$$\begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{et} \quad \begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

- ► Cela signifie que -2 est une **valeur propre** de $\begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix}$, et que $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ est un **vecteur propre**.
- ▶ Donc dans cette base, la matrice sera diagonale.

Valeurs et vecteurs propres pour l'exemple

+ + + ► +On trouve la relation:

$$\begin{bmatrix} 2 & -2 \\ 2 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{bmatrix}$$

Ce qui donne pour la suite:

$$x_n = \frac{1}{3} \Big[2c_2 \Big((-2)^n - 1 \Big) - c_1 \Big((-2)^n - 4 \Big) \Big],$$

$$y_n = \frac{1}{3} \Big[c_1 \Big((-2)^{n+1} + 2 \Big) + c_2 \Big((-1)^n 2^{n+2} - 1 \Big) \Big]$$

où c_1 et c_2 sont les populations initiales de lapins et de loups.

But du chapitre

Soit E un espace vectoriel de dimension finie n sur \mathbb{R} .

On note $\mathcal{E} = (e_1, \dots, e_n)$ une base de E.

Soit $u \in L(E)$. Réduire un endomorphisme, c'est chercher une base de E dans laquelle la matrice de u est la plus simple possible.

Le mieux que l'on puisse espérer est que cette matrice soit diagonale.

Définition

Un endomorphisme u de E est diagonalisable s'il existe une base $\mathcal{V} = (v_1, \dots, v_n)$ de E dans laquelle la matrice de u est diagonale.

Supposons qu'une telle base existe, notée $\mathcal{V}=(v_1,\ldots,v_n)$. Alors :

$$\operatorname{Mat}(u,\mathcal{V}) = egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & \lambda_n \end{pmatrix}.$$

Vecteur propre, valeur propre

On appelle valeur propre de u un scalaire $\lambda \in \mathbb{R}$ tel qu'il existe un vecteur $v \in E$, non nul, vérifiant

$$u(v) = \lambda v.$$

Le vecteur v est appelé vecteur propre de u associé à la valeur propre λ . On appelle spectre de u l'ensemble des valeurs propres de u, que l'on note

$$\operatorname{Spec}(u)$$
.

Sous espace propre

Proposition

 $^{\dagger}Soit^{\dagger}\lambda^{\dagger}\in ^{\dagger}K$. On définit le sous-espace

$$E_{\lambda} = \{ v \in E \mid u(v) = \lambda v \} = \ker(u - \lambda \operatorname{id}_{E}).$$

Alors:

- \triangleright E_{λ} est un sous-espace vectoriel de E.
- ▶ Si $\lambda \in \operatorname{Spec}(u)$, alors $E_{\lambda} \neq \{0\}$ et on l'appelle sous-espace propre associé à λ .
- ► Si $\lambda \notin \operatorname{Spec}(u)$, alors $E_{\lambda} = \{0\}$.

😯 À retenir

Un endomorphisme est injectif si et seulement si son noyau est nul.

Exemple

.

On considère l'endomorphisme u de \mathbb{R}^2 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 7 & -12 \\ 4 & -7 \end{pmatrix}.$$

Pour trouver les valeurs propres, on calcule:

$$\det(A - \lambda Id_2) = \begin{vmatrix} 7 - \lambda & -12 \\ 4 & -7 - \lambda \end{vmatrix} = (7 - \lambda)(-7 - \lambda) + 4 \times 12 = \lambda^2 - 1$$
$$= (\lambda - 1)(\lambda + 1).$$

Donc les valeurs propres sont -1 et 1. On cherche les sous espace propres en résolvant un système.

Exemple

+ + + + + + +

Pour -1:

$$(A+I)\vec{x} = 0 \iff \begin{cases} 8x - 12y = 0 \\ 4x - 6y = 0 \end{cases}$$

On fait la combinaison linéaire suivante : $L_2 \leftarrow L_2 - \frac{1}{2}L_1$ pour éliminer x dans la deuxième équation :

$$\begin{cases} 8x - 12y = 0 \\ 4x - 6y - \frac{1}{2}(8x - 12y) = 0 - 0 \end{cases} \iff \begin{cases} 8x - 12y = 0 \\ 4x - 6y - 4x + 6y = 0 \end{cases}$$

Il reste donc:

$$8x - 12y = 0 \iff x = \frac{3}{2}y, \text{ donc } E_{-1} = \text{Vect}\left\{\begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}\right\} = \text{Vect}\left\{\begin{pmatrix} 3 \\ 2 \end{pmatrix}\right\}$$

Exemple -

Pour 1:

$$(A-I)\vec{x} = 0 \iff \begin{cases} 6x - 12y = 0\\ 4x - 8y = 0 \end{cases}$$

On fait la combinaison linéaire suivante : $L_2 \leftarrow L_2 - \frac{2}{3}L_1$ pour éliminer x dans la deuxième équation :

$$\begin{cases} 6x - 12y = 0 \\ 4x - 8y - \frac{2}{3}(6x - 12y) = 0 - 0 \end{cases} \iff \begin{cases} 6x - 12y = 0 \\ 4x - 8y - 4x + 8y = 0 \end{cases}$$

La deuxième équation disparaît, il reste donc :

$$6x - 12y = 0 \iff x = 2y, \text{ donc } E_1 = \text{Vect}\left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

Pour trouver les valeurs propres de A, on résout

$$\det(A - \lambda Id_n) = 0.$$

Pour chaque racines λ_i , on trouve les vecteurs propres en résolvant le système

$$A\vec{x} - \lambda_i \vec{x} = \vec{0}.$$

Soit la matrice
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
. Quelles sont les valeurs propres de A ?

- □ A) 3 et 2
- \square B) 5 et -1
- □ C) 0 et 1
- ☐ D) 3 uniquement

Soit la matrice
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
. Quelles sont les valeurs propres de A ?

- ✓ A) 3 et 2
- \square B) 5 et -1
- \Box C) 0 et 1
- ☐ D) 3 uniquement

Pour la même matrice $A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$, quel est un vecteur propre associé à la valeur propre 3 ?

- \Box A) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- \Box B) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- \Box C) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- \Box D) $\binom{3}{2}$

Pour la même matrice $A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$, quel est un vecteur propre associé à la valeur propre 3?

$$\square$$
 A) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\Box$$
 B) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\Box$$
 B) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\Box$$
 C) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\Box$$
 D) $\binom{3}{2}$

Si \vec{v} est un vecteur propre associé à la valeur propre $\lambda=0$, que peut-on en conclure sur la matrice A ?

- \Box A) A est inversible.
- \square B) A n'est pas inversible.
- \Box C) A = 0.
- \square D) A est symétrique.

Si \vec{v} est un vecteur propre associé à la valeur propre $\lambda=0$, que peut-on en conclure sur la matrice A?

- \square A) A est inversible.
- \square B) A n'est pas inversible.
- \Box C) A=0.
- \square D) A est symétrique.

Soit
$$B = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$
. Quel est son polynôme caractéristique ?

- \Box A) $\lambda^2 7\lambda + 10$
- \Box B) $\lambda^2 + 7\lambda + 10$
- \Box C) $\lambda^2 5\lambda + 6$
- \Box D) $\lambda^2 3\lambda + 2$

Le polynôme caractéristique est le polynôme obtenu en calculant $\det(A - \lambda Id_n)$

Soit
$$B = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$
. Quel est son polynôme caractéristique ?

$$\triangle$$
 A) $\lambda^2 - 7\lambda + 10$

$$\Box$$
 B) $\lambda^2 + 7\lambda + 10$

$$\Box$$
 C) $\lambda^2 - 5\lambda + 6$

$$\Box$$
 D) $\lambda^2 - 3\lambda + 2$

Le polynôme caractéristique est le polynôme obtenu en calculant $det(A - \lambda Id_n)$

Pour la matrice $B = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$, ses vecteurs propres sont :

- \square A) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- \square B) $\binom{2}{2}$ et $\binom{2}{4}$
- \square C) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$
- \square D) $\binom{2}{2}$ et $\binom{1}{2}$

Pour la matrice $B = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$, ses vecteurs propres sont :

- \square A) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- \square B) $\binom{2}{2}$ et $\binom{2}{4}$
- \square D) $\binom{2}{2}$ et $\binom{1}{2}$

CNS diagonalisabilité

Theorem

Soit $u \in L(E)$ avec $\mathrm{Spec}(u) = \{\lambda_1, \lambda_2, \cdots, \lambda_p\}$, les λ_i étant deux à deux distincts. u est diagonalisable \iff il existe une base de E formée de vecteurs propres de u \iff $E = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \oplus E_{\lambda_p}$.

😯 À retenir

On rappelle que deux sous espaces vectoriels U et V de E sont en somme direct si et seulement si la concaténation de leur bases forme une base de E.

Theorem

Soit λ_1 et λ_2 deux valeurs propres distinctes de u. Alors

$$E_{\lambda_1}\cap E_{\lambda_2}=\{0_E\},$$

c'est-à-dire $E_{\lambda_1} \oplus E_{\lambda_2}$.

On démontre de la même manière que si $\lambda_1, \cdots, \lambda_p$ sont p valeurs propres distinctes deux à deux alors

$$E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \oplus E_{\lambda_n}$$
.

Conséquences immédiates :

- 1. *u* possède au maximum *n* valeurs propres.
- 2. Si u possède n valeurs propres distinctes avec $n = \dim E$, alors u est diagonalisable.

Table of Contents

Vāleurs propres, vecteurs propres

Recherche des valeurs propres et des vecteurs propres

Exemple complet de diagonalisation

Application:

Polynôme caractéristique

Theorem

$$+ + + \lambda \in \operatorname{Spec}(u) \Longleftrightarrow \det(u - \lambda \operatorname{Id}) = 0 \Longleftrightarrow \det(A - \lambda I_n) = 0.$$

Definition (Polynôme caractéristique)

Soit $u \in L(E)$. Soit $A = mat(u, \mathcal{E})$. On définit la fonction polynomiale $P_u(x)$ par

$$P_u(x) = \det(u - x \operatorname{Id}) = \det(A - x I_n).$$

Cette fonction est un polynôme de degré n (où dim E = n), qui s'écrit sous la forme :

$$P_A(x) = (-1)^n x^n + (-1)^{n-1} \operatorname{tr}(A) x^{n-1} + \dots + \operatorname{det}(A),$$

où $tr(A) = \sum_{i=1}^{n} a_{ii}$ désigne la trace de A.

Ce polynôme est appelé le polynôme caractéristique de A.

Calculer et factoriser le polynôme caractéristique P_B de la matrice

$$B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

On développe par rapport à la première colonne:

$$egin{bmatrix} -1 - \lambda & 1 & 1 \ 1 & -1 - \lambda & 1 \ 1 & 1 & -1 - \lambda \end{bmatrix}$$

$$= \left| (-1-\lambda) \left| \begin{array}{cc} -1-\lambda & 1 \\ 1 & -1-\lambda \end{array} \right| + \left(-1\right) \left| \begin{array}{cc} 1 & 1 \\ 1 & -1-\lambda \end{array} \right| + 1 \left| \begin{array}{cc} 1 & 1 \\ -1-\lambda & 1 \end{array} \right|$$

On calcule les 3 déterminants 2×2

$$egin{bmatrix} 1 & 1 \ -1 - \lambda & 1 \end{bmatrix} = 1 - (-1 - \lambda)$$

On trouve:

$$\begin{vmatrix} -1 - \lambda & 1 & 1 \\ 1 & -1 - \lambda & 1 \\ 1 & 1 & -1 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda) ((-1 - \lambda)^2 - 1) + (-1) ((-1 - \lambda) - 1) + (1 - (-1 - \lambda))$$

$$= (-1 - \lambda) (((-1 - \lambda) - 1) ((-1 - \lambda) + 1) + 2 (1 - (-1 - \lambda))$$

$$= -(1 + \lambda)(2 + \lambda)\lambda + 2(2 + \lambda)$$

Finalement:

$$egin{array}{c|cccc} -1 - \lambda & 1 & 1 \\ 1 & -1 - \lambda & 1 \\ 1 & 1 & -1 - \lambda \\ \end{array}$$

$$= (2+\lambda)(-\lambda^2 - \lambda + 2)$$

= $-(2+\lambda)(1-\lambda)(2+\lambda)$

Le polynôme caractéristique de

$$B = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

 $= -(1+\lambda)(2+\lambda)\lambda + 2(2+\lambda) = (2+\lambda)(-\lambda(1+\lambda) + 2)$

est $P_B(x) = -x^3 - 3x^2 + 4 = (1 - x)(x + 2)^2$.

Matrices semblables et polynôme caractéristique

Theorem

Deux matrices semblables ont le même polynôme caractéristique.

Par conséquent, si $u \in L(E)$, on définit le polynôme caractéristique de u par $P_u = P_A$, où A est la matrice de u dans une base quelconque de E.

Proof.

En effet si $A' = P^{-1}AP$ alors :

$$\det(A' - xI_n) = \det(P^{-1}AP - xP^{-1}P) = \det(P^{-1})\det(A - xI_n)\det(P) = \det(A - xI_n).$$

ATTENTION : La réciproque est fausse en général.

Theorem

Les valeurs propres de u sont les racines dans $\mathbb R$ de P_u . Si P_u est scin<mark>dé sur $\mathbb R$ (c'est-à-dire toutes ses racines sont dans $\mathbb R$), alors, si dim E=n, on a :</mark>

- * 1. *u*a *exactement n valeurs propres, distinctes ou non.
 - 2. La somme des valeurs propres vaut tr(A).
 - 3. Le produit des valeurs propres vaut det(A).

Definition

Soit $\lambda \in \operatorname{Spec}(u)$. On appelle <u>multiplicité</u> de la valeur propre λ l'ordre de <u>multiplicité</u> de λ en tant que racine de P_u . On la note m_{λ} .

Theorem

Si λ est une valeur propre de u de multiplicité m_{λ} , alors

$$1 \leq \dim E_{\lambda} \leq m_{\lambda}$$
.

* * *Corollary

 Si_{λ} est une valeur propre simple de u (i.e. $m_{\lambda}=1$), alors dim $E_{\lambda}=1$.

Theorem

Soit $u \in L(E)$. On note m_{λ} la multiplicité de la valeur propre λ .

$$u$$
 est diagonalisable $\iff \left\{ egin{array}{l} P_u \ ext{est scind\'e dans } \mathbb{R} \ orall \lambda \in \operatorname{Spec}(u), \dim E_\lambda = m_\lambda. \end{array}
ight.$

Corollary

Si P_u possède n racines distinctes, alors u est diagonalisable.

Soient
$$B_1 = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
 et $B_2 = \begin{pmatrix} -4 & 0 & -2 \\ 0 & 1 & 0 \\ 5 & 1 & 3 \end{pmatrix}$.

Les endomorphismes f_1 et f_2 de \mathbb{R}^3 dont les matrices dans la base can<mark>onique sont respectivement B_1 et B_2 sont-ils diagonalisables ?</mark>

Solution

Pour B_1 , on a calculé son polynôme caractéristique à l'exercice 4.2, on a trouvé:

$$P_{B_1}(\lambda) = -(\lambda - 1)(\lambda + 2)^2.$$

On résout donc les systèmes:

$$\begin{cases} -x & +y & +z & = x \\ x & -y & +z & = y \\ x & +y & -z & = z \end{cases}, \begin{cases} -x & +y & +z & = -2x \\ x & -y & +z & = -2y \\ x & +y & -z & = -2z \end{cases}$$

Pour le premier système, on trouve la solution $\operatorname{Vect}\left\{\begin{pmatrix}1\\1\\1\end{pmatrix}\right\}$, et pour le second:

$$\operatorname{Vect}\left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$$

Donc B_1 est diagonalisable.

Solution

Pour $B_{2,i}$ il se trouve qu'on trouve le même polynôme caractéristique,

$$P_{B_2}(\lambda) = -(\lambda - 1)(\lambda + 2)^2.$$

On cherche donc à résoudre les systèmes

$$\begin{cases}
-4x & -2z = x \\
-y & = y \\
5x & +y & 3z = z
\end{cases}, \begin{cases}
-4x & -2z = -2x \\
-y & = -2y \\
5x & +y & 3z = -2z
\end{cases}$$

On peut noter que les deux systèmes donnent y=0, et à partir de là, on peut déjà conclure que $E_1 \oplus E_{-2} \neq \mathbb{R}^3$, et donc que B_2 n'est pas diagonalisable. Sinon, on résout les systèmes et on trouve les sous espaces propres:

$$E_1 = \operatorname{Vect} \left\{ \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix} \right\}, \quad E_{-2} = \operatorname{Vect} \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Table of Contents

Våleurs propres, vecteurs propres

Recherche des valeurs propres et des vecteurs propres

Exemple complet de diagonalisation

Application:

Exemple

(partie 1 sur 6)

On considère la matrice

$$A = \begin{bmatrix} 1 & 6 & -3 \\ 9 & -2 & -3 \\ 9 & 6 & -11 \end{bmatrix}.$$

On commence par calculer le polynôme caractéristique

$$P_A(\lambda) = \begin{vmatrix} 1 - \lambda & 6 & -3 \\ 9 & -2 - \lambda & -3 \\ 9 & 6 & -11 - \lambda \end{vmatrix} = 256 - 12\lambda^2 - \lambda^3 = -(\lambda - 4)(\lambda + 8)^2$$

Pour tout $\lambda \in \{4, -8\}$, on définit :

$$E_{\lambda} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3, \ A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right\}$$

On cherche une base des sous espaces propres.

Exemple (partie 2 sur 6)

† Pour E_4 , on résout :

$$\begin{bmatrix} 1 & 6 & -3 \\ 9 & -2 & -3 \\ 9 & 6 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 4 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{cases} x + 6y - 3z & = 4x \\ 9x - 2y - 3z & = 4y \\ 9x + 6y - 11z & = 4z \end{cases}$$

En procédant par réduction de Gauss, on a :

$$\begin{cases}
-3x + 6y - 3z &= 0 \\
9x - 6y - 3z &= 0 \\
9x + 6y - 15z &= 0
\end{cases} \Leftrightarrow \begin{cases}
-x + 2y - z &= 0 \\
3x - 2y - z &= 0 \\
3x + 2y - 5z &= 0
\end{cases}$$

On peut multiplier la première ligne par -1 pour mettre un 1 devant x et l'utiliser comme pivot.

Exemple (partie 3 sur 6)

$$\begin{cases} x - 2y + z &= 0 \\ 4y - 4z &= 0 \Leftrightarrow \\ 8y - 8z &= 0 \end{cases} \Leftrightarrow \begin{cases} x - 2y &= -z \\ y &= z \end{cases} \Leftrightarrow \begin{cases} x - 2z &= -z \\ y &= z \end{cases}$$

Finalement, on obtient x = z, y = z, donc:

$$E_4 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3, \quad \begin{array}{c} x & = z \\ y & = z \end{array} \right\} = \left\{ \begin{bmatrix} z \\ z \\ z \end{bmatrix}, z \in \mathbb{R} \right\} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Exemple (partie 4 sur 6)

*Même*procédure pour -8 :

· + + + + + · ·

$$\begin{bmatrix} 1 & 6 & -3 \\ 9 & -2 & -3 \\ 9 & 6 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -8 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{cases} x + 6y - 3z & = -8x \\ 9x - 2y - 3z & = -8y \\ 9x + 6y - 11z & = -8z \end{cases}$$

On obtient l'équation :

$$9x + 6y - 3z = 0 \Leftrightarrow 3x + 2y - z = 0.$$

On choisit x et y libres, d'où z = 3x + 2y, et :

$$E_{-8} = \left\{ \begin{bmatrix} x \\ y \\ 3x + 2y \end{bmatrix}, x, y \in \mathbb{R} \right\} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}.$$

Exemple (partie 5 sur 6)

Conclusion:

$$E_4 = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}, \quad E_{-8} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}.$$

On remarque que

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 3 & 2 \end{vmatrix} = -4 \neq 0.$$

Ainsi, on a 3 vecteurs linéairement indépendants dans un espace de dimension 3, donc

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\} \text{ forme une base de } \mathbb{R}^3.$$

Exemple (partie 6 sur 6)

On peut maintenant changer de base :

$$P_{\mathcal{B} o \mathcal{B}_c} = egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & 3 & 2 \end{bmatrix}, \quad P_{\mathcal{B}_c o \mathcal{B}} = rac{1}{4} egin{bmatrix} 3 & 2 & -1 \ 1 & -2 & 1 \ -3 & 2 & 1 \end{bmatrix}$$

et on a la relation :

$$P_{\mathcal{B}_c \to \mathcal{B}} A P_{\mathcal{B} \to \mathcal{B}_c} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -8 \end{bmatrix}.$$

On considère l'endomorphisme dont la matrice dans la base canonique est :

$$A = \begin{bmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{bmatrix}$$

► On calcule :

$$P_A(\lambda) = \begin{vmatrix} 2 - \lambda & -1 & -1 \\ 2 & 1 - \lambda & -2 \\ 3 & -1 & -2 - \lambda \end{vmatrix} = -1 + \lambda + \lambda^2 - \lambda^3$$

- On factorise : $-1 + \lambda + \lambda^2 \lambda^3 = -(\lambda + 1)(\lambda 1)^2$
- ▶ Ainsi, 1 et −1 sont valeurs propres, on cherche une base de chaque sous-espace propre.

Pour E_1 , on résout :

$$\begin{bmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{cases} 2x - y - z & = x \\ 2x + y - 2z & = y \\ 3x - y - 2z & = z \end{cases}$$

On obtient :

$$\begin{cases} x - y - z &= 0 \\ 2x - 2z &= 0 \Leftrightarrow \begin{cases} x - y - z &= 0 \\ x &= z \\ 2y &= 0 \end{cases}$$

Ainsi,

$$E_1 = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}.$$

Pour E_{-1} , on résout :

$$\begin{bmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = - \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{cases} 2x - y - z & = -x \\ 2x + y - 2z & = -y \\ 3x - y - 2z & = -z \end{cases}$$

On obtient :

$$\begin{cases} 3x - y - z &= 0 \\ 2x + 2y - 2z &= 0 \\ 3x - y - 3z &= 0 \end{cases} \Leftrightarrow \begin{cases} z &= 0 \\ x + y &= z \end{cases}$$

Ainsi,

$$E_{-1} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}.$$

$$E_{-1} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}, \quad E_{1} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}.$$

Or, clairement:

$$E_{-1}\oplus E_1\neq \mathbb{R}^3$$
.

Donc
$$A = \begin{bmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{bmatrix}$$
 n'est pas diagonalisable.

Quand la matrice n'est pas diagonalisable

Remarque

Il existe un résultat général qui affirme que toute matrice est semblable à une matrice triangulaire.

Dans le cas de A, on a :

$$\begin{bmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

οù

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & -1 \\ -1 & -1 & 1 \end{bmatrix}.$$

Ce n'est pas une question de polynôme caractéristique

Considérons la matrice

$$B = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$$

Alors, on a:

$$\begin{vmatrix} 1 - \lambda & 0 & -2 \\ 0 & 1 - \lambda & -2 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = -1 + \lambda + \lambda^2 - \lambda^3 = -(\lambda + 1)(\lambda - 1)^2$$

Mais dans ce cas, on peut montrer que :

$$E_1 = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}, \quad E_{-1} = \operatorname{Vect} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

Ce n'est pas une question de polynôme caractéristique

On a alors clairement

$$\operatorname{Vect}\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}\right\} \oplus \operatorname{Vect}\left\{\begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}1\\0\\0\end{bmatrix}\right\} = \mathbb{R}^3,$$

et il vient :

+ + + + +

$$B = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

Ainsi B est diagonalisable.

Table of Contents

Vāleurs propres, vecteurs propres

Recherche des valeurs propres et des vecteurs propres

Exemple complet de diagonalisation

Applications

Rappel: calcul de A^m

Si A est diagonalisable, il existe une matrice diagonale D et une matrice de changement de base P telle que:

$$D = P^{-1}AP$$
 ou $A = PDP^{-1}$.

Alors, on a

$$A^{m} = (PDP^{-1})^{m} = \underbrace{(PDP^{-1})(PDP^{-1})\cdots(PDP^{-1})}_{m \text{ fois}}$$

$$= \underbrace{PD(P^{-1}P)D(P^{-1}P)\cdots(P^{-1}P)DP^{-1}}_{m \text{ fois}}$$

$$= PD^{m}P^{-1},$$

avec
$$D^m = \operatorname{Diag}(\lambda_1^m, \lambda_2^m, \cdots, \lambda_n^m)$$
.

Lien avec les équations différentielles

Pour l'exercice, considérons l'équation :

$$\ddot{x}(t) - 3\dot{x}(t) - 10x(t) = 0.$$

On peut résoudre cette équation avec l'équation caractéristique :

$$r^2 - 3r - 10 = 0$$

qui a deux racines : $r_1 = -2$ et $r_2 = 5$. Ainsi, on obtient :

$$x(t) = c_1 e^{-2t} + c_2 e^{5t},$$

où c_1 et c_2 sont déterminées par les conditions initiales.

Question:

D'où ça vient ces fonctions?

Rappel sur les EDO linéaires du second ordre

On considère une équation différentielle linéaire d'ordre 2 :

$$ay''(t) + by'(t) + cy(t) = f(t), \quad a \neq 0.$$

On commence par résoudre l'équation homogène:

$$ay''(t) + by'(t) + cy(t) = 0, \quad a \neq 0.$$

- ▶ On cherche des solutions de la forme $y(t) = e^{rt}$.
- On obtient le polynôme caractéristique :

$$P(r) = ar^2 + br + c.$$

Forme générale des solutions de l'équation homogène

La forme des solutions dépend des racines de P(r).

* Cas*1*: deux racines réelles distinctes
$$r_1 \neq r_2$$

$$y_h(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

Cas 2 : racine double
$$r_1 = r_2 = r$$

$$y_h(t)=(C_1+C_2t)e^{rt}.$$

Cas 3 : racines complexes
$$r = \alpha \pm i\beta$$

$$y_h(t) = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right).$$

Équation non homogène

Si on revient à l'équation initiale :

$$ay''(t) + by'(t) + cy(t) = f(t).$$

La solution générale est :

$$y(t) = y_h(t) + y_p(t),$$

où y_h est une solution de l'équation homogène et y_p une solution particulière.

- Si f(t) est un polynôme de degré n, on cherche f_p comme un polynôme de même degré.
- ▶ Si f(t) est de type $sin(\omega t)$ ou $cos(\omega t)$, on essaie

$$y_p(t) = A\cos(\omega t) + B\sin(\omega t).$$

Attention : si la fonction testée est déjà solution de l'équation homogène, on multiplie l'essai par t (ou t^2 si nécessaire).

Solution par l'algèbre $\ddot{x}(t) - 3\dot{x}(t) - 10x(t) = 0$

En posant $X(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$, l'équation peut se réécrire :

$$\begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 10 & 3 \end{bmatrix} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \Leftrightarrow \dot{X}(t) = AX(t),$$

Si l'équation était en une dimension, la solution serait évidemment :

$$X(t)=e^{tA}X(0).$$

▶ Il se trouve que cette équation est encore valable, si l'on définit l'exponentielle par

$$e^{tA} = I_2 + (tA) + \frac{1}{2}(tA)^2 + \cdots + \frac{(tA)^n}{n!} + \cdots$$

Il nous faut donc calculer Aⁿ.

Diagonalisation de A

On calcule les valeurs propres:

- ▶ Trouve $E_{-2} = \operatorname{Vect}\left\{ \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$ et $E_{10} = \operatorname{Vect}\left\{ \begin{bmatrix} 1\\5 \end{bmatrix} \right\}$.
- On calcule les matrices de changement de bases:

$$P_{\mathcal{B} o \mathcal{B}_c} = egin{bmatrix} -1 & 1 \ 2 & 5 \end{bmatrix}, \quad ext{et} \quad P_{\mathcal{B}_c o \mathcal{B}} = rac{1}{7} egin{bmatrix} -5 & 1 \ 2 & 1 \end{bmatrix}.$$

On trouve :

$$\begin{bmatrix} 0 & 1 \\ 10 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 5 \end{bmatrix} \times \frac{1}{7} \begin{bmatrix} -5 & 1 \\ 2 & 1 \end{bmatrix}$$
$$= P_{\mathcal{B} \to \mathcal{B}_c} \Delta P_{\mathcal{B} \to \mathcal{B}_c}^{-1}.$$

où Δ est la matrice diagonale.

Exponentielle de A

- + + + Rappelons que $e^{tA} = \sum_{k=0}^{+\infty} \frac{(tA)^k}{k!}$
- On remplace $A = P_{\mathcal{B} \to \mathcal{B}_c} \Delta P_{\mathcal{B} \to \mathcal{B}_c}^{-1}$:

$$e^{tA} = \sum_{k=0}^{+\infty} rac{t^k}{k!} \left(P_{\mathcal{B}
ightarrow \mathcal{B}_c} \Delta P_{\mathcal{B}
ightarrow \mathcal{B}_c}^{-1}
ight)^k = \sum_{k=0}^{+\infty} rac{t^k}{k!} P_{\mathcal{B}
ightarrow \mathcal{B}_c} \Delta^k P_{\mathcal{B}
ightarrow \mathcal{B}_c}^{-1},$$

On peut alors mettre en facteur les matrices de changement de base :

$$e^{tA} = P_{\mathcal{B} o \mathcal{B}_c} \left(\sum_{k=0}^{+\infty} rac{t^k}{k!} \Delta^k
ight) P_{\mathcal{B} o \mathcal{B}_c}^{-1}, \quad \text{où } \Delta^k = egin{bmatrix} (-2)^k & 0 \ 5^k \end{bmatrix}.$$

Donc :

$$e^{tA} = P_{\mathcal{B} \to \mathcal{B}_c} \begin{bmatrix} \sum_{k=0}^{+\infty} \frac{t^k}{k!} (-2)^k & 0 \\ 0 & \sum_{k=0}^{+\infty} \frac{t^k}{k!} 5^k \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_c}^{-1}.$$

Exponentielle de A

On obtient finalement :

$$e^{tA} = \begin{bmatrix} -1 & 1 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} e^{-2t} & 0 \\ 0 & e^{5t} \end{bmatrix} \times \frac{1}{7} \begin{bmatrix} -5 & 1 \\ 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{5}{7}e^{-2t} + \frac{2}{7}e^{5t} & -\frac{1}{7}e^{-2t} + \frac{1}{7}e^{5t} \\ -\frac{10}{7}e^{-2t} + \frac{10}{7}e^{5t} & \frac{2}{7}e^{-2t} + \frac{5}{7}e^{5t} \end{bmatrix}$$

Enfin, comme
$$\begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} = X(t) = e^{tA}X(0) = e^{tA}\begin{bmatrix} x(0) \\ \dot{x}(0) \end{bmatrix}$$
, on obtient la solution :

$$x(t) = \left(\frac{5}{7}e^{-2t} + \frac{2}{7}e^{5t}\right)x(0) + \left(-\frac{1}{7}e^{-2t} + \frac{1}{7}e^{5t}\right)\dot{x}(0),$$

$$= e^{-2t}\left(\frac{5}{7}x(0) + \frac{1}{7}\dot{x}(0)\right) + e^{5t}\left(\frac{2}{7}x(0) + \frac{1}{7}\dot{x}(0)\right).$$

Exercice bonus

- On veut résoudre y''(t) 4y'(t) + 4y(t) = 0.
- † † † † Poser $Y(t) = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$, et trouver A tel que Y'(t) = AY(t).
 - 2. Montrer que A n'est pas diagonalisable. Changer de base pour $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1/2 \\ 0 \end{bmatrix} \right\}.$
 - 3. Montrer par récurrence que $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}^k = \begin{bmatrix} 2^k & k2^{k-1} \\ 0 & 2^k \end{bmatrix}.$
 - 4. En déduire que

$$e^{tA} = P_{\mathcal{B} \to \mathcal{B}_c} \begin{bmatrix} \sum_{k=0}^{+\infty} \frac{t^k}{k!} 2^k & \sum_{k=0}^{+\infty} \frac{t^k}{k!} k 2^{k-1} \\ 0 & \sum_{k=0}^{+\infty} \frac{t^k}{k!} 2^k \end{bmatrix} P_{\mathcal{B} \to \mathcal{B}_c}^{-1}.$$

5. Trouver la solution de l'EDO. Indication :

$$\begin{bmatrix} \sum_{k=0}^{+\infty} \frac{t^k}{k!} 2^k & \sum_{k=0}^{+\infty} \frac{t^k}{k!} k 2^{k-1} \\ 0 & \sum_{k=0}^{+\infty} \frac{t^k}{k!} 2^k \end{bmatrix} = \begin{bmatrix} e^{2t} & te^{2t} \\ 0 & e^{2t} \end{bmatrix}.$$

Solution

On a
$$P_{\mathcal{B} o\mathcal{B}_c}=egin{bmatrix}1&-1/2\\2&0\end{bmatrix}$$
 et donc

$$P_{\mathcal{B}_c \to \mathcal{B}} = P_{\mathcal{B} \to \mathcal{B}_c}^{-1} = \begin{bmatrix} 0 & 1/2 \\ -2 & 1 \end{bmatrix}.$$

Dans la nouvelle base, on obtient :

$$\begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1/2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1/2 \\ -2 & 1 \end{bmatrix}$$

- 3 Direct
- 4. Astuce habituelle.
- 5. On réindexe simplement la série : $\sum_{k=0}^{+\infty} \frac{t^k}{k!} k 2^{k-1} = t \sum_{k=0}^{+\infty} \frac{t^{k-1}}{(k-1)!} k 2^{k-1} = t e^{2t}$.

Un système en trois dimension

On veut résoudre le système

(S)
$$\begin{cases} x'(t) = -x(t) + y(t) + z(t) \\ y'(t) = x(t) - y(t) + z(t) \\ z'(t) = x(t) + y(t) - z(t) \end{cases}$$

où x, y et z sont des fonctions de $\mathbb{R} \to \mathbb{R}$.

Soit $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et soit \vec{u} :

$$\vec{u}(t) = x(t) e_1 + y(t) e_2 + z(t) e_3$$

Comme les vecteurs de la base canonique ne dépendent pas du temps,

$$\vec{u}'(t) = x'(t) e_1 + y'(t) e_2 + z'(t) e_3.$$

Un système en trois dimension

$$X(t) = \mathsf{Mat}(ec{u}(t), \mathcal{B}) = egin{bmatrix} x(t) \ y(t) \ z(t) \end{bmatrix}, orall t \in \mathbb{R}.$$

Nous avons donc

$$X'(t) = \mathsf{Mat}(ec{u}'(t), \mathcal{B}) = egin{bmatrix} x'(t) \ y'(t) \ z'(t) \end{bmatrix},$$

et le système (S) s'écrit

$$X'(t) = BX(t)$$
 avec $B = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$.

• On cherche à diagonaliser B.

[†] [†] Le polynôme caractéristique de *B* est :

$$P_B(\lambda) = egin{bmatrix} -1 - \lambda & 1 & 1 \ 1 & -1 - \lambda & 1 \ 1 & 1 & -1 - \lambda \end{bmatrix} = -\lambda^3 - 3\lambda^2 + 4.$$

On remarque que 1 est une racine de PB, ce qui permet de factoriser :

$$P_B(\lambda) = -\lambda^3 - 3\lambda^2 + 4 = -(\lambda - 1)(\lambda + 2)^2$$

 \triangleright Ainsi, nous cherchons une base de E_1 et E_{-2} .

Pour E_1 , nous résolvons :

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{cases} -x + y + z &= x \\ x - y + z &= y \\ x + y - z &= z \end{cases}$$

- On trouve $E_1 = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$
- $\bullet \text{ On pose } v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$

Pour E_{-2} , nous résolvons :

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{cases} -x + y + z & = -2x \\ x - y + z & = -2y \\ x + y - z & = -2z \end{cases}$$

- ▶ On trouve $E_{-2} = \operatorname{Vect} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\}$

- On vérifie que $\mathcal{V} = \{v_1, v_2, v_3\}$ est une base,
- ▶ On en déduit que B est diagonalisable et

$$P_{\mathcal{V}
ightarrow \mathcal{B}_c} = egin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 1 & -1 & -1 \end{bmatrix}$$

On calcule son inverse :

$$P_{\mathcal{V} \to \mathcal{B}_c}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{bmatrix}.$$

Et la relation suivante est vérifiée :

$$P_{\mathcal{V} \to \mathcal{B}_c}^{-1} B P_{\mathcal{V} \to \mathcal{B}_c} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} = D.$$

$$lackbox$$
 On exprime maintenant la solution $ec{u}(t)$ dans la base $\mathcal{V}=\{v_1,v_2,v_3\}$:

$$X_1(t) = \operatorname{Mat}(ec{u}(t), \mathcal{V}) = egin{bmatrix} x_1(t) \ y_1(t) \ z_1(t) \end{bmatrix}, orall t \in \mathbb{R},$$

▶ On a encore
$$X_1'(t) = \operatorname{Mat}(\vec{u}'(t), \mathcal{V}) = \begin{vmatrix} x_1'(t) \\ y_1'(t) \\ z_1'(t) \end{vmatrix}$$
,

▶ Comme $P_{\mathcal{V} \to \mathcal{B}_c}$ est la matrice de passage de \mathcal{V} vers \mathcal{B}_c , on a les relations:

$$X(t) = P_{\mathcal{V} o \mathcal{B}_c} X_1(t), \ \ X'(t) = P_{\mathcal{V} o \mathcal{B}_c} X_1'(t).$$

où
$$P_{\mathcal{V} \to \mathcal{B}_c} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

Rappelons que X(t) vérifie

$$X'(t) = BX(t)$$
 avec $B = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$.

▶ En remplaçant $X(t) = P_{\mathcal{V} \to \mathcal{B}_c} X_1(t), \ \ X'(t) = P_{\mathcal{V} \to \mathcal{B}_c} X_1'(t)$, on obtient :

$$P_{\mathcal{V} \to \mathcal{B}_c} X_1'(t) = X'(t) = BX(t) = BP_{\mathcal{V} \to \mathcal{B}_c} X_1(t)$$

Ainsi, on obtient :

$$X_1'(t) = P_{\mathcal{V} \to \mathcal{B}_c}^{-1} B P_{\mathcal{V} \to \mathcal{B}_c} X_1(t) = D X_1(t), \quad \text{avec } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

* * * * Résoudre le système différentiel :

$$x'(t) = -x(t) + y(t) + z(t)$$

 $y'(t) = x(t) - y(t) + z(t)$
 $z'(t) = x(t) + y(t) - z(t)$

équivaut à résoudre :

$$\begin{cases} x'_1(t) &= x_1(t) \\ y'_1(t) &= -2y_1(t) \\ z'_1(t) &= -2z_1(t) \end{cases}$$

▶ avec la relation $X(t) = P_{\mathcal{V} \to \mathcal{B}_c} X_1(t)$.

On a alors clairement :

$$x_1(t) = x_0 e^t$$

 $y_1(t) = y_0 e^{-2}$
 $z_1(t) = z_0 e^{-2}$

- ightharpoonup où x_0, y_0 et z_0 sont des constantes arbitraires.
- Les fonctions initiales x, y et z sont donc données par :

$$X(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_0 e^t \\ y_0 e^{-2t} \\ z_0 e^{-2t} \end{bmatrix}$$
$$= \begin{bmatrix} x_0 e^t + y_0 e^{-2t} \\ x_0 e^t + z_0 e^{-2t} \\ x_0 e^t - (y_0 + z_0) e^{-2t} \end{bmatrix}.$$

Etude d'une suite récurrente

† † On cherche les suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que $(u_0,v_0,w_0)\in\mathbb{R}^3$

et pour tout
$$n \in \mathbb{N}$$
,

(S)
$$\begin{cases} u_{n+1} = -u_n + v_n + w_n \\ v_{n+1} = u_n - v_n + w_n \\ w_{n+1} = u_n + v_n - w_n \end{cases}$$

On définit pour tout entier n la matrice colonne $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ et alors :

$$(S)\Longleftrightarrow X_{n+1}=BX_n \quad ext{où} \quad B=egin{pmatrix} -1 & 1 & 1 \ 1 & -1 & 1 \ 1 & 1 & -1 \end{pmatrix}.$$

On vérifie facilement par récurrence que

$$\forall n \in \mathbb{N}, X_n = B^n X_0.$$

Etude d'une suite récurrente

Il faut donc calculer B^n . Or, B est diagonalisable et on trouve

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$

telle que

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = P^{-1}BP \quad \text{avec} \quad P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}.$$

On a donc :

$$B^{m} = P \begin{pmatrix} 1^{m} & 0 & 0 \\ 0 & (-2)^{m} & 0 \\ 0 & 0 & (-2)^{m} \end{pmatrix} P^{-1}$$

Etude d'une suite récurrente

Si on revient à X_n , on trouve:

$$X_{n} = \begin{pmatrix} u_{n} \\ v_{n} \\ w_{n} \end{pmatrix} = P \begin{pmatrix} 1^{m} & 0 & 0 \\ 0 & (-2)^{m} & 0 \\ 0 & 0 & (-2)^{m} \end{pmatrix} P^{-1} \begin{pmatrix} u_{0} \\ v_{0} \\ w_{0} \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 + (-1)^{n}2^{n+1} & 1 + (-1)^{n+1}2^{n} & 1 + (-1)^{n+1}2^{n} \\ 1 + (-1)^{n+1}2^{n} & 1 + (-1)^{n}2^{n+1} & 1 + (-1)^{n+1}2^{n} \\ 1 + (-1)^{n+1}2^{n} & 1 + (-1)^{n+1}2^{n} & 1 + (-1)^{n}2^{n+1} \end{pmatrix} \begin{pmatrix} u_{0} \\ v_{0} \\ w_{0} \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} u_{0}(1 + (-1)^{n}2^{n+1}) + (v_{0} + w_{0})(1 + (-1)^{n+1}2^{n}) \\ v_{0}(1 + (-1)^{n}2^{n+1}) + (u_{0} + w_{0})(1 + (-1)^{n+1}2^{n}) \\ w_{0}(1 + (-1)^{n}2^{n+1}) + (u_{0} + v_{0})(1 + (-1)^{n+1}2^{n}) \end{pmatrix}.$$

On peut donc calculer toutes valeurs de la suite X_n .

