

Chapitre 3 - Déterminants

Remise à Niveau

Table of Contents

Interprétation géométrique du déterminant

Développement d'un déterminant suivant une ligne ou une colonne

Applications

Table of Contents

Interprétation géométrique du déterminant

Développement d'un déterminant suivant une ligne ou une colonne

Applications

Définition

Soit $\mathcal{E} = (e_1, e_2)$ une base de E, un espace vectoriel de dimension 2. Soient U et V deux vecteurs de E. On appelle **déterminant de** U et V, noté $\det(U, V)$, l'aire vorientée du parallélogramme défini par les vecteurs U et V dans la base \mathcal{E} .

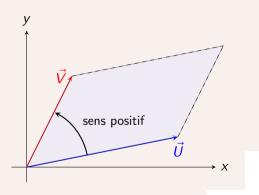


Figure: Aire orientée du parallélogramme défini par les vecteurs \vec{U} et \vec{V}

Propriétés

- Soient U, V et W trois vecteurs de E, et $\mathcal{E}=\{e_1,e_2\}$ une base de E
- $^{ ext{+}}$ $^{ ext{+}}$ $^{ ext{+}}$ $^{ ext{+}}$ det $_{\mathcal{E}}(e_1,e_2)=1$.
- 2. Le couple (U, V) est libre si et seulement si $\det_{\mathcal{E}}(U, V) \neq 0$.
 - 3. Pour tous réels α et β , on a :

$$\det_{\mathcal{E}}(\alpha U, V) = \alpha \det_{\mathcal{E}}(U, V), \quad \det_{\mathcal{E}}(U, \beta V) = \beta \det_{\mathcal{E}}(U, V).$$

4. Linéarité :

$$\begin{aligned}
\det_{\mathcal{E}}(U, V + W) &= \det_{\mathcal{E}}(U, V) + \det_{\mathcal{E}}(U, W), \\
\det_{\mathcal{E}}(U + W, V) &= \det_{\mathcal{E}}(U, V) + \det_{\mathcal{E}}(W, V).
\end{aligned}$$

5. Antisymétrie :

$$\det_{\mathcal{E}}(V,U) = -\det_{\mathcal{E}}(U,V).$$

Example (Présentation du calcul d'un déterminant
$$2 \times 2$$
)

Soient $U = u_1e_1 + u_2e_2$ et $V = v_1e_1 + v_2e_2$. On va calculer $\det_{\mathcal{E}}(U, V)$ à l'aide des propriétés précédentes.

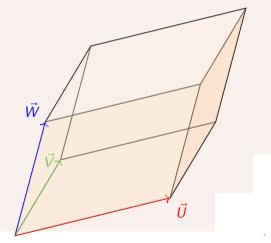
$$\det_{\mathcal{E}}(U, V) = \det_{\mathcal{E}}(u_1e_1 + u_2e_2, v_1e_1 + v_2e_2)
= u_1v_1 \det_{\mathcal{E}}(e_1, e_1) + u_1v_2 \det_{\mathcal{E}}(e_1, e_2) + u_2v_1 \det_{\mathcal{E}}(e_2, e_1) + v_1v_1 \det_{\mathcal{E}}(e_2, e_2)
= u_1v_2 - u_2v_1.$$

🖓 À retenir

Si
$$U=u_1e_1+u_2e_2=\begin{pmatrix}u_1\\u_2\end{pmatrix}$$
 et $V=v_1e_1+v_2e_2=\begin{pmatrix}v_1\\v_2\end{pmatrix}$, alors
$$\det_{\mathcal{E}}(U,V)=\begin{vmatrix}u_1&v_1\\u_2&v_2\end{vmatrix}=u_1v_2-u_2v_1.$$

Déterminant de trois vecteurs en dimension 3

Soiet $\mathcal{E} = (e_1, e_2, e_3)$ une base d'un espace vectoriel E de dimension 3. Soient U, V et W trois vecteurs de E. On note S(U, V, W) le volume "orienté" du parallélépipède défini par les vecteurs U, V et W.



Propriétés

Soit U, V et W trois vecteurs de E.

- 1. $\det_{\mathcal{E}}(e_1, e_2, e_3) = 1$.
- 2. (U, V, W) est libre si et seulement si $\det_{\mathcal{E}}(U, V, W) \neq 0$.
- 3. det est une forme 3-linéaire alternée.
- 4. $\det_{\mathcal{E}}(V, U, W) = -\det_{\mathcal{E}}(U, V, W)$ et $\det_{\mathcal{E}}(V, W, U) = \det_{\mathcal{E}}(U, V, W)$.

Calcul d'un déterminant 3×3

$$U = u_1 e_1 + u_2 e_2 + u_3 e_3, \quad V = v_1 e_1 + v_2 e_2 + v_3 e_3, \quad W = w_1 e_1 + w_2 e_2 + w_3 e_3.$$

Montrons que

$$\det_{\mathcal{E}}(U,V,e_3) = \begin{vmatrix} u_1 & v_1 & 0 \\ u_2 & v_2 & 0 \\ u_3 & v_3 & 1 \end{vmatrix} = u_1v_2 - u_2v_1.$$

Calcul d'un déterminant 3 × 3

De plus,

$$\begin{aligned} \det_{\mathcal{E}}(e_1, V, e_3) &= \det_{\mathcal{E}}(e_1, v_1 e_1 + v_2 e_2 + v_3 e_3, e_3) \\ &= v_1 \det_{\mathcal{E}}(e_1, e_1, e_3) + v_2 \det_{\mathcal{E}}(e_1, e_2, e_3) + v_3 \det_{\mathcal{E}}(e_1, e_3, e_3) \\ &= v_2 \,, \end{aligned}$$

et

$$\det_{\mathcal{E}}(e_2, V, e_3) = v_1 \det_{\mathcal{E}}(e_2, e_1, e_3) + v_2 \det_{\mathcal{E}}(e_2, e_2, e_3) + v_3 \det_{\mathcal{E}}(e_2, e_3, e_3)$$

$$=-v_1$$
.

Calcul d'un déterminant 3×3

$$\det_{\mathcal{E}}(U,V,e_3)=u_1v_2-u_2v_1.$$

De même, on montre que

$$\begin{vmatrix} u_1 & 0 & w_1 \\ u_2 & 1 & w_2 \\ u_3 & 0 & w_3 \end{vmatrix} = u_1 w_3 - u_3 w_1 \quad \text{et} \quad \begin{vmatrix} 1 & v_1 & w_1 \\ 0 & v_2 & w_2 \\ 0 & v_3 & w_3 \end{vmatrix} = v_2 w_3 - v_3 w_2.$$

Calcul d'un déterminant
$$3 \times 3$$

* * Au final, si on pose

$$U = u_1e_1 + u_2e_2 + u_3e_3$$
, $V = v_1e_1 + v_2e_2 + v_3e_3$, $W = w_1e_1 + w_2e_2 + w_3e_3$,

alors

$$\det_{\mathcal{E}}(U,V,W) = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 v_2 w_3 + u_2 v_3 w_1 + u_3 v_1 w_2 - u_2 v_1 w_3 - u_1 v_3 w_2 - u_3 v_2 w_1.$$

Calcul d'un déterminant 3 × 3

On peut grouper les termes par rapport à la première colone:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = \begin{vmatrix} u_1 v_2 w_3 + u_2 v_3 w_1 + u_3 v_1 w_2 - u_2 v_1 w_3 - u_1 v_3 w_2 - u_3 v_2 w_1 \\ = u_1 (v_2 w_3 - v_3 w_2) - u_2 (v_1 w_3 - v_3 w_1) + u_3 (v_1 w_2 - v_2 w_1) \\ = u_1 \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix}$$

Calcul d'un déterminant 3×3

On peut également faire de même par rapport à la première ligne:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 v_2 w_3 + u_2 v_3 w_1 + u_3 v_1 w_2 - u_2 v_1 w_3 - u_1 v_3 w_2 - u_3 v_2 w_1$$

$$= u_1 (v_2 w_3 - v_3 w_2) - v_1 (u_2 w_3 - u_3 w_2) + w_1 (u_2 v_3 - u_3 v_2)$$

$$= u_1 \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - v_1 \begin{vmatrix} u_2 & w_2 \\ u_3 & w_3 \end{vmatrix} + w_1 \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix}$$

♀ À retenir

Le déterminant se calcule de façon récursive. On peut calculer un déterminant d'une matrice $n \times n$ à l'aide de n déterminants de taille $(n-1) \times (n-1)$.

Quel est le déterminant de la matrice $\begin{pmatrix} 2 & 5 \\ -1 & 3 \end{pmatrix}$?

- □ A) 13
- □ B) 11
- □ C) 17
- □ D) 7

Quel est le déterminant de la matrice $\begin{pmatrix} 2 & 5 \\ -1 & 3 \end{pmatrix}$?

- □ A) 13
- ☑ B) 11
- □ C) 17
- □ D) 7

La matrice $\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$ a un déterminant égal à :

- □ A) 1
- □ B) 2
- □ C) 0
- □ D) -2

La matrice $\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$ a un déterminant égal à :

- □ A) 1
- □ B) 2
- ☑ C) 0
- □ D) -2

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$
. Alors son déterminant vaut :

- □ A) 2
- □ B) 8
- □ C) 1
- □ D) 4

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$
. Alors son déterminant vaut :

La matrice
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$
 a un déterminant nul.

- \Box A) Vrai \Box B) Faux

La matrice
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$
 a un déterminant nul.

Déterminant de *n* vecteurs en dimension *n*

Soit $\mathcal{E} = (e_1, e_2, \dots, e_n)$ une base de E, un espace vectoriel de dimension n.

Soit V_1, V_2, \cdots, V_n n vecteurs de E.

On démontre que l'ensemble des formes n-linéaires alternées sur E est un espace vectoriel de dimension 1.

On appelle **déterminant** et on note $\det_{\mathcal{E}}$ la forme *n*-linéaire alternée sur *E* qui prend la valeur 1 en (e_1, e_2, \dots, e_n) .

Propriétés

- 1. $\det_{\mathcal{E}}$ est une forme *n*-linéaire alternée.
 - 2. $\det_{\mathcal{E}}(e_1, e_2, \cdots, e_n) = 1.$
 - 3. (V_1, V_2, \dots, V_n) est libre si et seulement si $\det_{\mathcal{E}}(V_1, V_2, \dots, V_n) \neq 0$
 - 4. Si pour tout $j \in \{1, 2, \dots, n\}$, $V_j = \sum_{i=1}^n a_{ij}e_i$ avec tous les a_{ij} dans \mathbb{R} , alors

$$\det_{\mathcal{E}}(V_1, V_2, \cdots, V_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \, a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n},$$

où S_n est le groupe des permutations de l'ensemble $\{1, 2, \cdots, n\}$.

Déterminant d'une matrice carrée d'ordre n

Soit $A \in \mathcal{M}_n(\mathbb{R})$, l'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{R} . On note a_{ij} ses coefficients. On appelle <u>déterminant</u> de la matrice A le sc<mark>alaire défini par :</mark>

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \, a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n} = \det_{\mathcal{E}} (C_1, C_2, \dots, C_n), \tag{1}$$

où les C_i sont les colonnes de A. On note:

$$\operatorname{pour} A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}), \quad \operatorname{alors} \quad \det A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} \in \mathbb{R}.$$

Résultats clés

Le déterminant de *A* est une forme *n*-linéaire alternée par rapport aux colonnes de *A*. En conséquence :

- $\overset{\circ}{1}$. $\overset{\circ}{\mathsf{E}}\overset{\circ}{\mathsf{changer}}$ deux colonnes de la matrice A change le signe du déterminant.
 - 2. Ajouter à une colonne une combinaison linéaire <u>des autres</u> colonn<mark>es ne modifie pas</mark> le déterminant.
 - 3. Pour tout $\lambda \in \mathbb{R}$, on a $\det(\lambda A) = \lambda^n \det A$.

Theorem

Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on a $\det({}^tA) = \det A$.

Le déterminant de A est une forme n-linéaire par rapport aux lignes de A, donc :

- 1. Échanger deux lignes de la matrice A change le signe du déterminant.
- 2. Ajouter à une ligne une combinaison linéaire <u>des autres</u> lignes ne <u>modifie pas</u> le déterminant.

Exemple -

On va calculer le déterminant de la matrice suivante.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

On note les lignes :

$$L_1 = (1, 2, 3, 4), L_2 = (1, 1, 1, 1), L_3 = (0, 1, 2, 3)$$

Et on remarque que $L_1 = L_2 + L_3$. On peut conclure que $\det A = 0$ puisqu'alors, les lignes forment une famille liée.

Exemple

Sinon, on peut faire un calcul explicite. Comme on ne change pas la valeur du déterminant en ajoutant des combinaison linéaires des autres lignes, on fait l'opération

$$L_1 \leftarrow L_1 - L_2 - L_3$$

ce qui donne

$$\det A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 4 & 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 4 & 3 & 2 & 1 \end{vmatrix} = 0$$

Sachant que $255=15\times17,\ 357=21\times17$ et $527=31\times17,\ \text{montre}$ r que le déterminant

$$\Delta_2 = egin{array}{cccc} 2 & 5 & 5 \ 3 & 5 & 7 \ 5 & 2 & 7 \ \end{bmatrix}$$

est divisible par 17.

Solution

On note C_1 , C_2 et C_3 les colonnes de Δ . On ne change pas le déterminant en ajoutant à C_3 la combinaison $100 \cdot C_1 + 10 \cdot C_2$:

$$\Delta = \begin{vmatrix} 2 & 5 & 5 \\ 3 & 5 & 7 \\ 5 & 2 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 5 & 2 \cdot 100 + 5 \cdot 10 + 5 \\ 3 & 5 & 3 \cdot 100 + 5 \cdot 10 + 7 \\ 5 & 2 & 5 \cdot 100 + 2 \cdot 10 + 7 \end{vmatrix} = \begin{vmatrix} 2 & 5 & 255 \\ 3 & 5 & 357 \\ 5 & 2 & 527 \end{vmatrix}$$

On factorise la dernière colonne:

$$\Delta = \begin{vmatrix} 2 & 5 & 15 \times 17 \\ 3 & 5 & 21 \times 17 \\ 5 & 2 & 31 \times 17 \end{vmatrix} = 17 \times \underbrace{\begin{vmatrix} 2 & 5 & 15 \\ 3 & 5 & 21 \\ 5 & 2 & 31 \end{vmatrix}}_{\in \mathbb{Z}}$$

Table of Contents

Interprétation géométrique du déterminant

Développement d'un déterminant suivant une ligne ou une colonne

Applications

Développement suivant une colonne/ligne

Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in M_n(K)$. On a

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} \Delta_{ij} a_{ij},$$

où Δ_{ij} est le déterminant de la matrice obtenue à partir de A en enlevant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne.

En développant suivant la ligne i, on obtient :

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} \Delta_{ij} a_{ij},$$

où Δ_{ij} est le déterminant de la matrice obtenue à partir de A en enlevant la $i^{\text{ème}}$ ligne et la $i^{\text{ème}}$ colonne.

Calculer de deux manières différentes le déterminant

$$\Delta = egin{bmatrix} -2 & 4 & 1-\lambda \ 0 & 1-\lambda & 2 \ 1-\lambda & 2 & 0 \end{bmatrix}.$$

Méthode 1: Développement par rapport à la 1ère ligne.

On développe Δ le long de la première ligne :

$$\Delta = (-2) \det \begin{pmatrix} 1 - \lambda & 2 \\ 2 & 0 \end{pmatrix} - 4 \det \begin{pmatrix} 0 & 2 \\ 1 - \lambda & 0 \end{pmatrix} + (1 - \lambda) \det \begin{pmatrix} 0 & 1 - \lambda \\ 1 - \lambda & 2 \end{pmatrix}$$

$$= (-2) ((1 - \lambda) \cdot 0 - 2 \cdot 2) - 4 (0 \cdot 0 - 2 \cdot (1 - \lambda)) + (1 - \lambda) (0 \cdot 2 - (1 - \lambda) \cdot (1 - \lambda))$$

$$= 8 + 8(1 - \lambda) - (1 - \lambda)^{3}.$$

On obtient, en développant.

$$\Delta(\lambda) = \lambda^3 - 3\lambda^2 - 5\lambda + 15$$

Méthode 2 : Développement par rapport à la 1ère colonne

 * . On développe Δ le long de la première colonne :

$$\Delta = (-2) \det \begin{pmatrix} 1 - \lambda & 2 \\ 2 & 0 \end{pmatrix} - 0 \det \begin{pmatrix} 4 & 1 - \lambda \\ 2 & 0 \end{pmatrix} + (1 - \lambda) \det \begin{pmatrix} 4 & 1 - \lambda \\ 1 - \lambda & 2 \end{pmatrix}$$

$$= (-2) \left((1 - \lambda) \cdot 0 - 2 \cdot 2 \right) - 0 + (1 - \lambda) \left(4 \cdot 2 - (1 - \lambda)^2 \right) \right)$$

$$= 8 + 8(1 - \lambda) - (1 - \lambda)^3.$$

On obtient, en développant,

$$\Delta(\lambda) = \lambda^3 - 3\lambda^2 - 5\lambda + 15$$

Déterminant d'une matrice triangulaire

Theorem (Déterminant des matrices triangulaires supérieures)

 $(a_{ij}) \in M_n(K)$ une matrice triangulaire supérieure, c'est-à-di<mark>re que</mark>

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix}.$$

Alors

$$\det A = \prod_{i=1}^n a_{ii}.$$

Propriétés importantes

Pour tous $A, B \in M_n(K)$, on a

$$\det(BA) = \det(AB) = (\det A) \times (\det B).$$

Soit
$$A \in \mathcal{M}_n(K)$$
.

A est inversible
$$\iff$$
 det $A \neq 0$.

De plus, si A est inversible, alors

$$\det A^{-1} = \frac{1}{\det A}.$$

Deux matrices semblables ont le même déterminant.

Attention:

En général, on n'a pas

$$\det(A+B) = \det A + \det B.$$

Table of Contents

Interprétation géométrique du déterminant

Développement d'un déterminant suivant une ligne ou une colonne

Applications

Un exemple (partie 1 sur 3)

Exercice

Soit
$$A = \begin{bmatrix} \lambda & 1 & 2 \\ 1 & \lambda & -1 \\ 2 & 2 & \lambda \end{bmatrix}$$
. Trouver une condition sur λ pour que A soit inversible?

- On calcule le déterminant et on regarde quand il n'est pas nul.
- On soustrait la 2^e colonne à la 1^{re}, puis on utilise la linéarité par rapport à la première colonne pour obtenir :

$$\begin{vmatrix} \lambda & 1 & 2 \\ 1 & \lambda & -1 \\ 2 & 2 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 1 & 2 \\ 1 - \lambda & \lambda & -1 \\ 0 & 2 & \lambda \end{vmatrix} = (\lambda - 1) \begin{vmatrix} 1 & 1 & 2 \\ -1 & \lambda & -1 \\ 0 & 2 & \lambda \end{vmatrix}$$

Un exemple (partie 2 sur 3)

ightharpoonup On ajoute maintenant la 1^{re} ligne à la 2^e ligne :

$$(\lambda - 1) egin{bmatrix} 1 & 1 & 2 \ -1 & \lambda & -1 \ 0 & 2 & \lambda \end{bmatrix} = (\lambda - 1) egin{bmatrix} 1 & 1 & 2 \ 0 & \lambda + 1 & 1 \ 0 & 2 & \lambda \end{bmatrix}$$

et on développe suivant la première colonne :

$$\begin{array}{c|cccc} (\lambda - 1) \begin{vmatrix} 1 & 1 & 2 \\ 0 & \lambda + 1 & 1 \\ 0 & 2 & \lambda \end{vmatrix} & = & (\lambda - 1)(-1)^{1+1} \times 1 \times \begin{vmatrix} \lambda + 1 & 1 \\ 2 & \lambda \end{vmatrix} \\ & = & (\lambda - 1)[\lambda(\lambda + 1) - 2] \\ & = & (\lambda - 1)^2(\lambda + 2). \end{array}$$

Rappelons que A est inversible si et seulement si det $A \neq 0$:

$$(\lambda - 1)^2(\lambda + 2) \neq 0 \iff \lambda \neq 1$$
 et $\lambda \neq -2$.

Chapitre 3 - Déterminants

Un exemple (partie 3 sur 3)

On peut aussi développer directement suivant la première colonne :

$$\begin{vmatrix} \lambda & 1 & 2 \\ 1 & \lambda & -1 \\ 2 & 2 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 \\ 2 & \lambda \end{vmatrix} + (-1) \times \begin{vmatrix} 1 & 2 \\ 2 & \lambda \end{vmatrix} + 2 \times \begin{vmatrix} 1 & 2 \\ \lambda & -1 \end{vmatrix}$$

$$= \lambda(\lambda^{2} + 2) - (\lambda - 4) + 2(-1 - 2\lambda) = \lambda^{3} - 3\lambda + 2.$$

Il faut ensuite factoriser en remarquant que 1 est une racine :

$$\lambda^3 - 3\lambda + 2 = (\lambda - 1)(\lambda^2 + \lambda + 2) = (\lambda - 1)^2(\lambda + 2).$$

Trouver l'inverse d'une matrice

Definition

Pour $A \in M_n(\mathbb{K})$, on définit la **comatrice** comme étant la matrice :

$$\mathbf{C}(A) = \left((-1)^{i+j} \Delta_{ij} \right)_{1 \leqslant i,j \leqslant n},$$

où Δ_{ij} est le déterminant de la matrice obtenue en supprimant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne de A.

Definition

La matrice ${}^{t}\mathbf{C}(A)$ est la matrice adjointe de A, notée $\mathrm{Adj}A$.

Note

En français, les notations diffèrent légèrement. La matrice $((-1)^{i+j}\Delta_{ij})_{1\leqslant i,j\leqslant n}$ est appelée comatrice, traditionnellement notée comA.

Un résultat de Laplace

† † Theorem

 $\forall A \in M_n(K) \pmod{A} \cdot A = A \pmod{A} = \det A I_n.$

$$A^{-1} = \frac{1}{\det A} \operatorname{com} A.$$

Un résultat de Laplace

Theorem

 $\forall A \in M_n(K) \pmod{A} = A \pmod{A} = \det A I_n.$ Si A est inversible, alors : $A^{-1} = \frac{1}{\det A} \text{com} A.$

Remarque

La matrice adjointe possède de nombreuses propriétés intéressantes : lien Wikipédia. Cependant, cette formule est très peu pratique à utiliser (sauf pour un ordinateur).

Un exemple

Exercice

Considérons la matrice :

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}.$$

Montrer que B est inversible et donner son inverse.

Pour montrer que B est inversible, on vérifie si det $B \neq 0$.

$$\det B = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{vmatrix} = 1 \times (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$$
$$= (-1)(-1-1) = 2.$$

Ainsi, det $B \neq 0$ et B est bien inversible.

Solution

(partie 2 sur 3)
On rappelle
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$
.

Soient b_{ii} les coefficients de la comatrice.

Solution (partie 2 sur 3)

(partie 2 sur 3)
On rappelle
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$
.

Soient b_{ij} les coefficients de la comatrice. Alors :

$$b_{11} = (-1)^{1+1} \begin{vmatrix} 0 & -1 \\ 1 & -2 \end{vmatrix} = 1,$$

$$b_{12} = (-1)^{1+2} \begin{vmatrix} 1 & -1 \\ 0 & -2 \end{vmatrix} = 2,$$

$$b_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

Solution (nartie 2 sur 3)

(partie 2 sur 3)
On rappelle
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$
.

Soient b_{ij} les coefficients de la comatrice. Alors :

$$b_{11} = (-1)^{1+1} \begin{vmatrix} 0 & -1 \\ 1 & -2 \end{vmatrix} = 1,$$

$$b_{12} = (-1)^{1+2} \begin{vmatrix} 1 & -1 \\ 0 & -2 \end{vmatrix} = 2,$$

$$b_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

Cela nous donne la première ligne de la comatrice, ou encore la première colonne de la matrice adjointe.

Solution (partie 2 sur 3)

(partie 2 sur 3)
On rappelle
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$
.

Soient b_{ij} les coefficients de la comatrice. Alors :

$$b_{11} = (-1)^{1+1} \begin{vmatrix} 0 & -1 \\ 1 & -2 \end{vmatrix} = 1,$$

$$b_{12} = (-1)^{1+2} \begin{vmatrix} 1 & -1 \\ 0 & -2 \end{vmatrix} = 2,$$

$$b_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

Cela nous donne la première ligne de la comatrice, ou encore la première colonne de la matrice adjointe.

Il reste à calculer b_{21} , b_{22} , b_{23} , b_{31} , b_{32} et b_{33} .

Solution (partie 3 sur 3)

On obtient finalement :

$$\mathbf{C}(B) = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -2 & -1 \\ 0 & 2 & 0 \end{bmatrix}.$$

Ainsi,

$$B^{-1} = rac{1}{\det B} \operatorname{Adj}(B) = rac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 2 & -2 & 2 \\ 1 & -1 & 0 \end{bmatrix}.$$

Peu pratique, sauf pour les ordinateurs

Comparons cette méthode avec la méthode habituelle :

$$B\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = B^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.$$

C'est-à-dire, résoudre pour x, y, z:

$$\begin{cases} x & +z = X \\ x & -z = Y \\ y & -2z = Z \end{cases}$$

À partir de là, on peut utiliser la réduction de Gauss de manière brute...

Inversion de B

+ + ... ou remarquer directement que :

$$x = \frac{X+Y}{2}, \quad z = \frac{X-Y}{2},$$

ce qui donne y = X - Y + Z. Ainsi, on a :

$$\begin{array}{ll} x = \frac{1}{2}X & +\frac{1}{2}Y \\ y = X & -Y & +Z \\ z = \frac{1}{2}X & -\frac{1}{2}Y \end{array}$$

Ou, exprimé sous forme matricielle :

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 2 & -2 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

