FUNCTIONAL SAFETY COURSE #4

Dr. FRANCK GALTIE DIRECTEUR AUTOMOTIVE FUNCTIONAL SAFETY

COMPANY CONFIDENTIAL

SECURE CONNECTIONS FOR A SMARTER WORLD

General Agenda

- Course #1 : Functional Safety awareness
- Course #2 :

Brainstorming on power inverter architecture, potential failures and safety mechanisms (ie. safety concept)

Course #3:

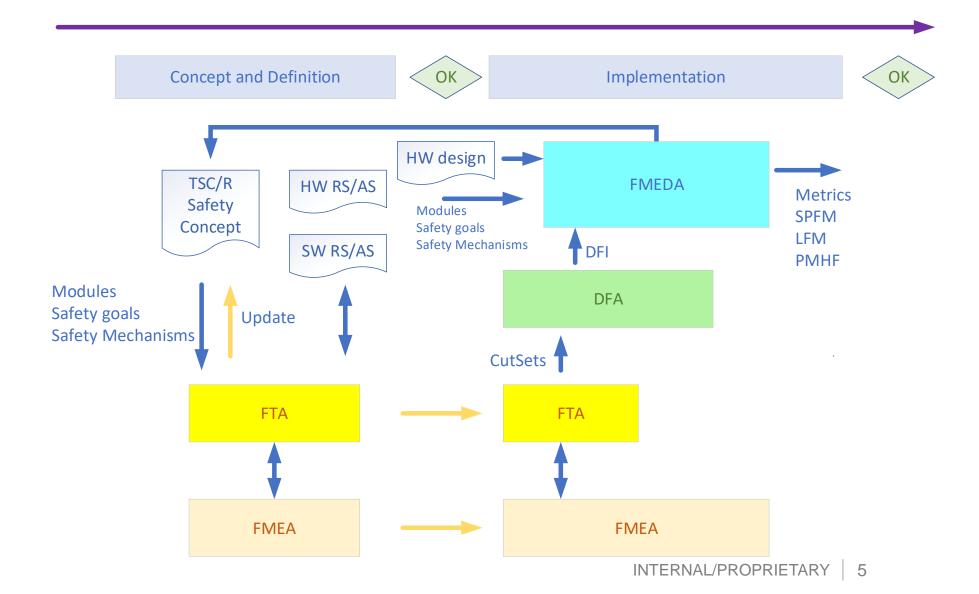
Continue on Safety Concept

• Course #4:

How to prove our concept and assess it

Course #4 agenda

- Functional Safety Analysis
- Confirmation measures
- Internship



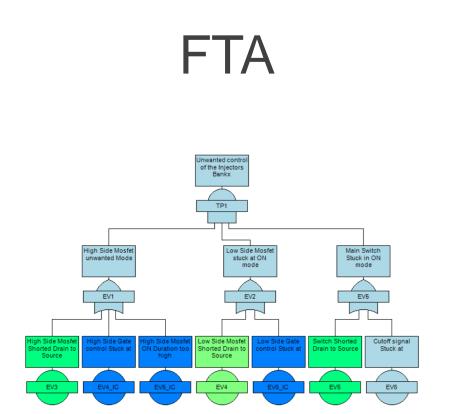
01. SAFETY ANALYSIS FTA, DFA, FMEDA

SECURE CONNECTIONS FOR A SMARTER WORLD

Safety Analysis Safety Analysis Flow

NP

Safety Analysis Qualitative Safety Analysis


inputs	process	outputs
Catalog of failure modes /causes (design, process)	Design, Process FMEA Pinout FMEA	RPN values
Lessons learnt	Severity ranking	Safety key characteristics
HW functions	Measures for Occurrence	Safety measures evidence
SW functions	removal & Detection at t=0 Safety measures for during	Verification of the Safety Concept and design (SYS, HW, SW)
Safety goals/requirements	operation	(313, 110, 300)
FMEA no.: y Quality Engineer FMEA date (Org.):	1.1.1.1.2.4 04/12/2017	

Process: B	CC14 FMEA					Process responsibi	lity:					FMEA no.:					1.1	.1.1.2
Product:						Prepared by: Store	z, Antoine, Product R	eliabil	ity Quality Engineer			FMEA date (Org.):				04/*	12/20
Diet	sch, Jérôme, Ar	blication Engineer; Be rchitect; Givelin, Phili eliability Quality Engi	ppe, De	sylvain, Project Manag sign Lead; Storez,	er;	Completion date: 0	4/12/2017					FMEA date (Rev.)					05/1	12/20
unction	Requirement	Potential Failure	С	Potential effect(s)	S		Current preventive	0	Current detection	D	RPN	Recommended	Responsibility &	Actio	n resi	ults		
		Mode		of failure		of failure	action		action			action	Target Completion Date	Action taken	S	0	D	R
system ele	ement: CT Dia	qnostic module		1222				-	12.55	- 		1		I	1			_
open bad CT etection		BMS - CT Open load diagnostic triggered without fault		BMS - Diagnostics not working		Resistor - Resistor too low	PVT (process- voltage- temperature) simulation Givelin, Philippe, Design Lead	3	Measure resistance value at lab over full voltage range Castignolles, Marie, CZ Lab Engineer	2	54		Bereski, Sylvain, Project Manager 31/05/2017 completed (on 31/ 05/2017)	D: Measure resistance value at lab over full voltage range with and without open cell (completed on 31/05/2017) D: perform Drift Analysis after HTOL (completed on 31/05/2017)	9	3	2	
		BMS - CT Open load diagnostic not triggered with a fault		BMS - Diagnostics not working BMS - Incorrect Cell voltage measurement		Resistor - Resistor too high	PVT (process- voltage- temperature) simulation Givelin, Philippe, Design Lead		Measure resistance value at lab over full voltage range Castignolles, Marie, Cz Lab Engineer	2	60		Bereski, Sylvain, Project Manager 31/05/2017 completed (on 31/ 05/2017)	D: Measure resistance value at lab over full voltage range with and without open cell (completed on 31/05/2017)	10	3	2	6

Safety Analysis

Qualitative Safety Analysis

inputs process **Functional Architecture** FTA (preliminary, system, (System down to basic hardware and software) Elements) Set of rules for failure Allocation of Safety mechanisms to faults Safety goals/requirements Definition of additional required Safety mechanism Safety mechanisms

modes

outputs

Safe faults Single Point fault **Common Cause fault**

Pairs Fault – SM Minimal cutsets

Verification of the Safety Concept and design (SYS, HW, SW)

Safety Analysis

Dependent Failure Analysis

DFA

inputs	process	outputs
Pairs faults – SM Minimal cutsets	DFA	DFI Elements for FMEDA
Catalog of Dependent Failure Initiators	Shared resources Cascaded failure	Verification of the Safety measures with fault injection, etc.
Co-existing elements	Safety measure identification Verification of the Safety	Confirmation for sufficient Independence and freedom
Safety goals/requirements	measures	from interference

		HV and SV Ele	ments		Г С	lependent Failu	re Initiator		Anal	sis
ID	Source (FTA)	Information	HV and SV Elements Pairs and Groups	Element_Type	DFL_Family_Type	DFI_Type	Description	Failure Effect - Yiolation of safety goal	Safety Measure to prevent dependent failures from violating the safety goal	Safety Measure to pr the occurrence of depen failures during oper;
	EV1932.EV1992_SM1	Bit Flip in Mirrar Register/VDIOVMONOV			Failures of shared resources	Common Voltage regulator or preregulator	BOSsupply is used by VPREIP and inderectly by VMONx thru VSFS clamp	Yor	Indirect detection of failure of shared resource	Soparato rozeurcoz te roduc ameunt erzcepo efsharo rozeurcoz
	EV1934.EV1992_SM1				Failuros of sharod rosourcos	Common Bandqap	Voltago roforonco	Yer	Rodundancy	Soparato rosourcos to roduc amount or scope of share resources
Pair 1	EV1935.EV1992_SM1	Unintended Test Møde activation/DDIO VMON OV	VPRE & VDDIO VMON OV (SM1)	SFuSM	Failures of shared resources	Common Current reference orbiar generator	Current reference	Yer	Rodundancy	Soparato rosourcos to roduc amount orscopo ofsharo rosourcos
	GT536.EV1992_SM1	OSC Main Failure Leading to OVVDDIO VMON OV	**************************************	570511	Failures of shared resources	Camman Clack element	Clack for lagic and SMPS	Yor	Rodundancy	Soparato rosourcos to roduc amount orscopo ofsharo rosourcos
					Failures of shared resources	Common RAM	OTP	Yor	Rodundancy	Soparato rosourcos to roduc amount or scopo of sharo rosourcos
					Random Physical Root causes	Crarr talk (rubrtrato curront, capacitivo cauplinq)	Crærr talk, latchup, læcal hoating	Yes		Physicalsoparation (o.q. distance of the die fro local heatsource external o die)
	EV1948.EV1992_SM3	PRE_SW pinshartod ta qaundVDDIO YMON UV			Failures of shared resources	Common Voltago roqulator or proroaulator	BOS supply is used by VPREIP and inderectly by VMONx thru VSFS clamp	Yer	Indirect detection of failure of shared resource	Soparato rorourcos to roduc amount or scopo of share rosourcos
	EV1949.EV1992_SM3	External Law Side rharted to GNDVDDIO VMON UV			Failuros of sharod rosourcos	Common Bandqap	Voltago roforonco	Yer	Rodundancy	Soparato rosourcos to roduc amount orscopo of share rosourcos
∢ → …	SG2_GateCu	tSets SG1_GateCutSets DFA_HW_I	lements DFA_Coexis	ting_Elements DFA_9	SW_Element	s +			•	•

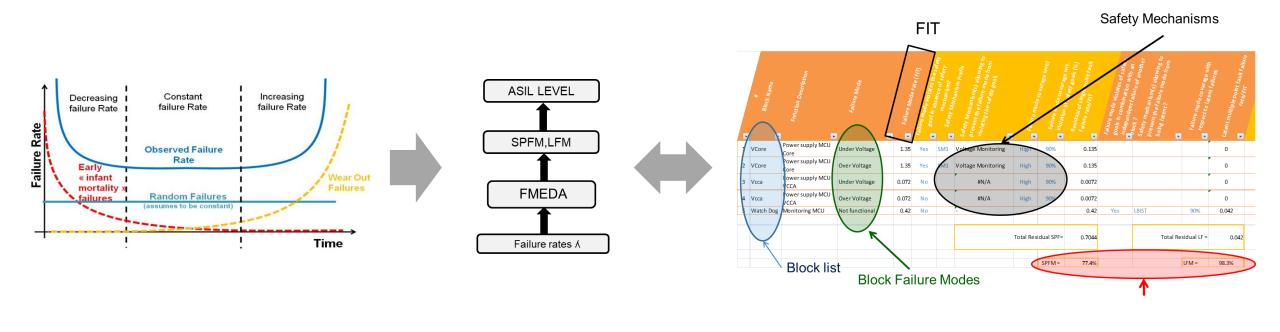
Safety Analysis Quantitative Safety Analysis

FMEDA

inputs	process	outputs
Hardware elements (close to HW implementation)	FMEDA	Single Point Fault Metric
Failure rate	Violation of safety goal	Latent Fault Metric
	directly or in combination with a second fault	PMHF
Catalog of failure modes		
	Safety mechanism allocation	(for each Safety goal)
Safety goals/requirements	to the fault for Single point	
Safety mechanisms & DC	Fault and Latent Fault	Confirmation for achieved ASIL

M ≥ 99,28× M ≥ 99,76× F ≥ 99,28× F 3,65E-10 h ⁻¹ 5,09E-08 h ⁻¹	Targeted Safets Integrits	Is the mean time between	LBIST enabled and	THING CONTRACT OF						
	Level	resets shorter than the multiple-point fault detection interval	LBIST enabled and activated within multiple- point fault detection interval	PMC_PMCCR, PMC_SB, PMC_TBIM2, PMC_TRIM3, and PCU_PSTAT vithin fault tolerant time interval	External watchdog enabled	Core logic supply low voltage Monitor	Core logic supply high voltage Monitor	3.3 ¥ main supply low voltage Monitor	3.3 V Input/Output supply Low voltage Monitor	3.3 ¥ Flash supply Low voltage Monitor
	Targatud Safety Integrity Level	le tha mean time botwara razute chortor than the multiple-point fasik dotection interval	LENST	Verify context of IPMC_DMCCR, IPMC_DR, PMC_TRMQ, PMC_TRM3, and PCU_PSTAT	Estonal watchdog	Core logic supply low voltage Monitor	Core logic supply high roltage Monitor	0.0 V main supply fow voltage Monitor	0.0 Y lepot/Output sapply Low voltoge Monitor	3.3 V Flack supply Low voltage Monitor
Scope -	ASIL D % SIL3 (99%)	 TRUE 	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
Select	ct eted ASIL	Is the mean time between destructive resets or between power up and power down shorter than the multiple-point fault detection interval	Diagnostic coverage of LBIST	Content of PMC_CFGR, PMC_SR, PMC_TRIM2, PMC_TRIM3, and PCU_PSTAT is verified within fault tolerant time interval	Vindow and/or Logical Monitoring external Watchdog implemented	Diagnostic coverage for SMPS	Diagnostic coverage for SMPS over voltage	True	Diagnostic coverage for external supply under voltage	Diagnostic coverage for external supply under voltage
level		TFLE	DC = 85,0%	TRUE	TRUE	DC + 60,0%	DC = 60,0%	hà.	DC = 60,0%	DC + 60,010
			[IWF031]	Diagnostic coverage for CRC	Diagnostic Coverage of Watchdog	Diagnostic coverage for SMPS drift	Diagnostic coverage for SMPS drift		Diagnostic coverage for esternal supply drift	Diagnostic coverage for external supply drift
				DC = 93.0%	DC + 90.0%	DC + 0.0%	DC = 0.0%	5.3	DC = 0.0%	DC + 0.0%
				Diagnostis coverage for bandgap and package contacts	Diagnostic coverage for SMPS drik DC = 0.0%	Diagnostic coverage for SMPS oscillation DC + 90.0%	Diagnostic coverage for SMPS oscillation DC = 90.0%	2.4	Diagnostic coverage for external supply oscillations DC + 90.05	Diagnostic coverage for esternal supply oscillations DC = 90.05
				[SM_070]	Diagnostic coverage for SMPS oscillation	[184_087]	[584_007]	Diagnostic coverage for bandgap	Diagnostic coverage for bandgap DD = 0.0%	Diagnostic coverage for bandgap DC = 0.0%
					Diagnostic coverage for SMPS power spikes			Diagnostic coverage for bandgap oscillations	Diagnostic coverage for bandgap oscillations	Diagnostic coverage for bandgap oscillations
					DC = 0.0%			DC = 0.0%	DC = 0.0%	DC = 0.0%
					Diagnostic coverage for bandgap and package contacts					Diagnostic coverage for flas supply contacts regarding op high resistive and short
					DC + 30,0%			n.a. 	n.a. Diagnostic coverage for esternal supply over voltage	DC = 98.0% Diagnostic coverage for esternal supply over voltage DC = 0.0%
								Diagnostic coverage for PCM voltage regulator over ucltage DC = 60.0%	Diagnostic coverage for PCM voltage regulator over voltage DC = 00.0%	Diagnostic coverage for PC voltage regulator over volta DC = 60.010
								voltage regulator oscillation and spikes	voltage regulator oscillation and spikes	Diagnostic coverage for PC voltage regulator oscillatio and spikes
								DC = 0,0%	DC = 0.0%	DC = 0,0%

Α.	D	0	E	r	G	1	J	ĸ	L	м	н	0		Q	n
											SPFM =	99,19%			L
•	Function 👻	Sak black		Failure made 🗸 🗸	Failura mode that has the patential to violate the cal cost is observed		Failura ana da rata 🗸 🗸		Safaty Mackanirm(r) allowing to provent the failure mode from violating the re- gents	\$150 2421	Failura moda Cavaraga de vialation 🗸	Raridual of aingle pairs fault fails	Failurs muds that may load to the violation of refety quels in continuity	Sefety	Safaty Hackenirm(r) ellening to provent the latent failure mode f violating the safety quality for take
FM1	High Taltage Back regulator Enternal FET	PRE-REGULATOR	1,285	Regulated Output in averagitage	Yee	14,29×	0,111	\$1154	Onervalhage detection as TDD00H0N	0.2.1.2	**×	0,80331	Na	•	Nat applicable
FM2	High Taltage Dack regulator Enternal/ET	PRE-REGULATOR	1,265	Regulated Output is undervaltage	Yes	14,29×	0,115	\$7110	Undersalt age datestian an VDD10990H	0.2.0.2	99%	0,00101	Ne		Nat applicable
FH3	High Taltage Back regulator Enternal FET	PRE-REGULATOR	1,265	Regulated Output effected by zpikez	Yee	14,29%	0,101	57490	OverfUndervaltage detection on VDDIOHOH	0.2.4.2	99 X	0,00101	No		Hat applicable
FI14	High Teltage Back regulator Enternal FET	PRE-REGULATOR	1,285	Regulated Output drift	Na	14,29×	0,111		Nat applicable		62	0,00000	Ne		Matapplicable
FMS	High Taltage Dack regulator External FET	PRE-REGULATOR	1,245	la carro staturt-up time	Yee	14,29×	0,111	\$2410	Undersaltage data stias as VDD10990N	0.2.1.2	**×	0,66191	Ne		Nat applicable
F2456	High Taltage Dack regulator Enternal/ET	PRE-REGULATOR	1,265	Regulated Output Ozcillatian inzide regulation range	Na	14,29%	0,115		Mat appEcable		6 %	0,00000	Ne		Mat applicable
FHT	High Teltage Back regulator Enternal FET	PRE-REGULATOR	1,265	Requieted Output Orcillation matride requietion range	Yee	14,29%	0,111	SMIC	OverfUndervaltage detection on VDDIOHOH	0.2.4.2	***	0,60331	No		Mat applicable
FMS	80051														
FM9	BOOSTint FETruitching resolutor	BOOST Law Side FET	0,547	Louride suitch RDSON too high when turned ON	N.	33,33×	0,049		Mat applicable		0×	0,00000	Ne		Natapplicable
71110	BOOSTIALFETruitching resolutor	BOOSTLau Sida FET	0,547	Lauri de suit chaharte d'(Drais ta Savena)	н.	22,22×	0,049		Nan appEcable		6x	0,00000	Na		Mart app Excelute
∢ →	System	Assumptions	Sa	fety Goal or Requirement Sa	afety Mechar	nisms	Failure Ra	te IECTR6	2380 Block Failure Ra	ate FM	EDA_PM	FMEDA	_VMON 1.	• + : •	


	FMEDA_OP	FMEDA_PM	FMEDA_MON
SPFM	99,19%	99,19%	NA
LFM	96,00%	96,57%	95,26%
PMHF (10^-9)	0,433		

What is Failure Rate and Why Do We Want to Evaluate It?

Many standardized models use a "bathtub curve" simplication, which assumes:

- Early life defects are screened by the supplier (Infant mortality).
- The useful lifetime of components must not be exceeded.(wear-out period).
- A constant failure rate is assumed by the probabilistic estimation method and requested by ISO 26262
- The reference conditions must be known : NXP preferred standards is IEC62380

Safety Analysis FMEDA Process

Two types of Safety Mechanisms:

- to prevent faults from being SPF
 Diagnostics shall be effective within the FTTI at system level
- to prevent faults from being LF
 Diagnostics shall be effective within the MPFTI at system level

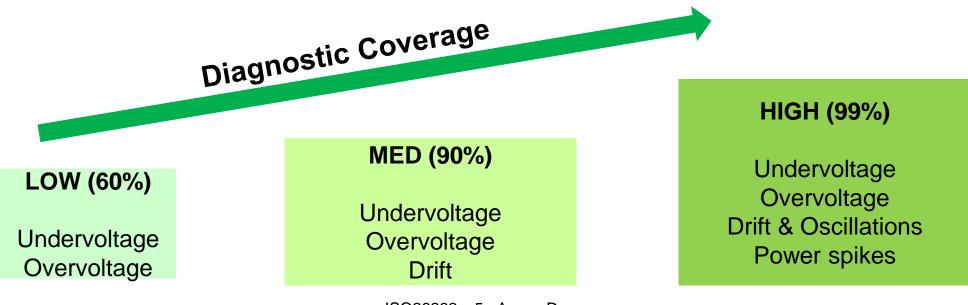
Safety Mechanism implementation:

- 1. embedded in the IC (INT SM)
- 2. external to the IC (EXT SM)
- 3. combined embedded and external

(for instance requiring MCU decision for the reaction to a safe state)

4. Hardware and or Software solution (HW SM, SW SM)

Safety mechanism requirements are defined in the safety concept


Collection of Safety Mechanisms

Fault IC MCU

Safety Analysis FMEDA Process

Diagnostic Coverage of the Safety Mechanisms

Proportion of the hardware **element failure rate** that is detected or controlled by the implemented **safety mechanisms**

Safety Analysis

Examples of Safety Mechanisms and Diagnostic Coverage

#	Safety mechanism	§ ISO 26262	Level of Diagnostic coverage	Used?	DC (%)
-	Not applicable	-	-	-	0%
SM1	Overvoltage detection on VDDIOMON	D.2.8.2	High	Yes	99%
SM2	Undervoltage detection on VDDIOMON	D.2.8.2	High	Yes	99%
SM23	CRC check on SPI protocol	D.2.7.6, D.2.7.7, D.2.7.8	High	Yes	99%

Safety mechanism	Diganostic Coverage numbers
Assumed LBIST	
for stuck-at	90%
for bridging	90%
for open	70%
Average coverage	85%
Assumed MBIST	90%
SRAM	
ECC data and address random data coverage(SECDED)	69%
ECC data and address random address coverage(SECDED)	75%
ECC data and address random data coverage(SEDDED)	99%
Flash EEPROM	
ECC multiple data random failure coverage (SECDED)	71,48%
ECC multiple data random failure coverage (SEDDED)	99,61%

Safety Analysis Example of FMEDA: SPFM Evaluation

٨	В	D	E	F	G	1	J	к	L II		or the ety goal
										SPFM	l = 99,18%
•	Function	Function Description	λ •	Failure mode	Failure mode that has the potential to violate the safety goal in absence of safety mechanis	Failure rate distribution	Failure mode rate	Applicable Safety mechanism ▼	Safety Mechanism(s) alloving to prevent the failure mode from violating the safety goals	Failure mode coverage wrt. violation of safety goal	Hesidual of single point fault
FM1	HV BUCK High Voltage Buck regulator External FET	Pre-regulator connected to Battery. EXT HS and LS	2,738	Regulated Output in overvoltage	Yes	14,29%	0,391	SM1A	Overvoltage detection on VDDIOMON	99%	0,00391
FM2	High Voltage Buck regulator External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	Regulated Output in undervoltage	Yes	14,29%	0,391	SMIB	Undervoltage detection on VDDIOMON	99%	0,00391
FM3	High Voltage Buck regulator External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	Regulated Output affected by spikes	Yes	14,29%	0,391	SMIC	Over/Undervoltage detection on VDDIOMON	99%	0,00391
FM4	High Voltage Buck regulator External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	Regulated Output drift	No	14,29%	0,391		Not applicable	0%	0,00000
FM5	High Voltage Buck regulator External FET High Voltage Buck regulator	Pre-regulator connected to Battery, EXT HS and LS	2,738	Incorrect start-up time Regulated Output Oscillation inside regulation	Yes	14,29%	0,391	SM1B	Undervoltage detection on VDDIOMON	99%	0,00391
FM6	External FET High Voltage Buck regulator	Pre-regulator connected to Battery, EXT HS and LS	2,738	range Regulated Output Oscillation outside regulation	No	14,29%	0,391		Not applicable	0%	0,00000
FM7 FM146	External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	range	Yes	14,29%	0,391	SMIC	Over/Undervoltage detection on VDDIOMON	99%	0,00391
FM147	Voltage monitor VCOREMON	Voltage monitoring of the BUCK1 (UV)	0,506	Undervoltage never detected	No	50,00%	0,253		Not applicable	0%	0,00000
FM148	Voltage monitor VCOREMON	Voltage monitoring of the BUCK1 (UV)	0,506	Undervoltage always detected	No	50,00%	0,253		Not applicable	0%	0,00000
FM149	Voltage monitor VCOREMON	Redundant DVS DAC aligned with DVS dac in Main. Fully independent	0,309	reference voltage output too low	No	50,00%	0,155		Not applicable	0%	0,00000
FM150	Voltage monitor VCOREMON	Redundant DVS DAC aligned with DVS dac in Main. Fully independent	0,309	reference voltage output too High	No	50,00%	0,155	•	Not applicable	0%	0,00000
FM151	Voltage monitor VCOREMON	Voltage monitoring of the BUCK1 (OV)	0,506	Overvoltage never detected	No	50,00%	0,253	•	Not applicable	0%	0,00000
FM152 FM153	Voltage monitor VCOREMON Voltage monitor VCOREMON	Voltage monitoring of the BUCK1 (OV) Redundant DVS DAC aligned with DVS dac in Main. Fully independent	0,506 0,309	Overvoltage always detected reference voltage output too low	No	50,00% 50,00%	0,253 0,155		Not applicable Not applicable	0% 0%	0,00000 0,00000
FM154	Voltage monitor VCOREMON	Redundant DVS DAC aligned with DVS dac in Main. Fully independent	0,309	reference voltage output too High	No	50,00%	0,155		Not applicable	0%	0,00000
FM441	PLL Clock										0
FM442	Internal clock PLL	PLL in the Main domain	0,376	Output is stuck Low	Yes	16,67%	0,063	SM20	Over/Undervoltage detection on Voltage Monitoring (VCOREMON, or VDDIOMON, or VMONx)	99%	0,00063
FM443	Internal clock PLL	PLL in the Main domain	0,376	Output is stuck High	Yes	16,67%	0,063	SM20	Over/Undervoltage detection on Voltage Monitoring (VCOREMON, or VDDIOMON, or VMONx)	99%	Residual o
FM444	Internal clock, PLL	PLL in the Main domain	0,376	Frequency of the output signal is too high	Yes	16,67%	0,063	SM20	Over/Undervoltage detection on Voltage Monitoring (VCOREMON, or VDDIOMON, or VMONx)	99%	SPF
FM445	Internal clock, PLL	PLL in the Main domain	0,376	Frequency of the output signal is too low	Yes	16,67%	0,063	SM20	Over/Undervoltage detection on Voltage Monitoring (VCOREMON, or VDDIOMON, or VMONx) Over/Undervoltage detection on Voltage Monitoring	99%	Failure ra
FM446	Internal clock PLL	PLL in the Main domain	0,376	Jitter too high of the output signal	Yes	16,67%	0,063	SM20	(VCOREMON, or VDDIOMON, or VMONx) Over/Undervoltage detection on Voltage Monitoring		
FM447	Internal clock PLL	PLL in the Main domain	0,376	Incorrect duty cycle	Yes	16,67%	0,063	SM20	(VCOREMON, or VDDIOMON, or VMONx)	99%	

Violation of the safety goal in absence of SM Applicable Safety Mechanism **Total SPFM**

Safety Analysis Example of FMEDA: LFM Evaluation

FM2 FM3 FM4 FM5 FM5	Function	Function Description Function Description Fre-regulator connected to Battery, EXT HS and LS Pre-regulator connected to Battery, EXT HS and LS Pre-regulator connected to Battery, EXT HS and LS	2,738	Failure mode Regulated Output in overvoltage	Failure mode that may lead to the violation of safety goals in combination with an independent failure of another block ?	Detection means ? Safety mechanism(s) allowing to prevent the failure mode from being latent ?	Safety Mechanism(s) allowing to prevent the latent failure mode from violating the safety goals	Failure mode coverage with respect to laten failures	
FM2 FM3 FM4 FM5	External FET High Voltage Buck regulator External FET High Voltage Buck regulator External FET High Voltage Buck regulator	Pre-regulator connected to Battery, EXT HS and LS		Regulated Output in overvoltage	Ne			· · · · · · · · · · · · · · · · · · ·	
FM3 FM4 FM5 FM5	External FET High Voltage Buck regulator External FET High Voltage Buck regulator		2,738		No		Not applicable	0%	0,00000
FM4 FM5	High Voltage Buck regulator External FET High Voltage Buck regulator	Pre-regulator connected to Battery, EXT HS and LS		Regulated Output in undervoltage	No		Not applicable	0%	0,00000
FM5	High Voltage Buck regulator		2,738	Regulated Output affected by spikes	No		Not applicable	0%	0,00000
FIMD		Pre-regulator connected to Battery, EXT HS and LS	2,738	Regulated Output drift	No		Not applicable	0%	0,00000
FM6	High Voltage Buck regulator External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	Incorrect start-up time	No		Not applicable	0%	0,00000
	High Voltage Buck regulator External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	Regulated Output Oscillation inside regulation range	No		Not applicable	0%	0,00000
EM7	High Voltage Buck regulator External FET	Pre-regulator connected to Battery, EXT HS and LS	2,738	Regulated Output Oscillation outside regulation range	No		Not applicable	0%	0,00000
FM146 ¥0	COREMON								0
	oltage monitor VCOREMON	Voltage monitoring of the BUCK1 (UV)	0,506	Undervoltage never detected	Yes	SM13	ABIST	60%	0,10113
	/oltage monitor VCOREMON /oltage monitor VCOREMON	Voltage monitoring of the BUCK1(UV) Redundant DVS DAC aligned with DVS dac in Main. Fully	0,506 0,309	Undervoltage always detected reference voltage output too low	Yes No	SM13 -	ABIST Not applicable	60% 0%	0,10113 0,00000
FM150 Vo	/oltage monitor VCOREMON	independent Redundant DVS DAC aligned with DVS dac in Main. Fully	0,309		No		Not applicable	0%	0,00000
FM151 Vo	oltage monitor VCOREMON	independent Voltage monitoring of the BUCK1 (OV)	0,506	reference voltage output too High Overvoltage never detected	Yes	SM13	ABIST	60%	0,10113
	oltage monitor VCOREMON	Voltage monitoring of the BUCK1 (OV)	0,506	Overvoltage always detected	Yes	SM13	ABIST	60%	0,10113
FM153 Vo	oltage monitor VCOREMON	Redundant DVS DAC aligned with DVS dac in Main. Fully independent	0,309	reference voltage output too low	No		Not applicable	0%	0,00000
FM154 Vo	/oltage monitor VCOREMON	Redundant DVS DAC aligned with DVS dac in Main. Fully independent	0,309	reference voltage output too High	No		Not applicable	0%	0,00000
FM441 PI	LL Clock								0
FM442	Internal clock PLL	PLL in the Main domain	0,376	Output is stuck Low	No		Not applicable	0%	
FM443	Internal clock, PLL	PLL in the Main domain	0,376	Output is stuck High	No		Not applicable	0% L	atent multi
FM444	Internal clock, PLL	PLL in the Main domain	0,376	Frequency of the output signal is too high	No		Not applicable	0%	point fault
FM445	Internal clock, PLL	PLL in the Main domain	0,376	Frequency of the output signal is too low	No	-	Not applicable	0%	failure rate
FM446	Internal clock, PLL	PLL in the Main domain	0,376	Jitter too high of the output signal	No		Not applicable	0%	
FM447	Internal clock, PLL	PLL in the Main domain	0,376	Incorrec			Not applicable	0%	0,00000
				Violatio safety goal in		on Sa	Applicable fety Mechanism		

02. FUNCTIONAL SAFETY CONFIRMATION MEASURE

SECURE CONNECTIONS FOR A SMARTER WORLD

ISO 26262 Functional Safety Audit/Assessment

Requirement	Confirmation review	Functional safety audit	Functional safety assessment
Subject for evaluation	Work product	Implementation of the processes required for functional safety	Item as described in the item definition in accordance with ISO 26262-3:—, Clause 5
Result	Confirmation review reporta	Functional safety audit reporta in accordance with 6.4.8	Functional safety assessment report in accordance with 6.4.9
Responsibility of the persons that perform the confirmation measure	Evaluation of the compliance of the work product with the corresponding requirements of ISO 26262	Evaluation of the implementation of the required processes	Evaluation of the achieved functional safety
	Process or technical	Process review	Technical review Peer review

03. INTERNSHIP

SECURE CONNECTIONS FOR A SMARTER WORLD

Stage ingénieur Sureté de Fonctionnement

Lieu : TOULOUSE – Automotive Functional Safety Profil recherché : Electronique / Systèmes embarqués REFERENCE POUR POSTULER : R-2000 sur www.careers.com

Contexte

La sureté de fonctionnement (appelée aussi « <u>Functional Safety</u> ») est un incontournable du développement des systèmes et composants pour l'automobile. L'avènement des fonctions d'aide à la conduite et finalement du véhicule autonome renforcent encore l'importance d'assurer la sécurité de fonctionnement des systèmes embarqués, incluant les composants électroniques et logiciels.

Tout développement se doit de respecter la norme ISO26262 qui inclue, notamment, différentes analyses, vérification and évaluations indépendantes.

Dans ce cadre, un outil tel que « Medini Analyze » peut être utiliser pour faciliter les analyses (HARA, FTA, DFA, FMEDA) tout en les liant aux exigences du cahier des charges.

Dans le cadre de ce stage, l'élève ingénieur sera responsable de :

supporter le déploiement d'un projet pilote dans l'outil,

- réaliser les tutoriels nécessaires à l'utilisation future de l'outil,

 proposer des méthodes d'évaluation (« assessment ») des analyses en mettant à profit les avantages de l'outil,

former des futurs utilisateurs.

De plus, l'élève ingénieur pourra être amené à supporter des activités en rapport avec l'injection de faute. En effet, une nouvelle méthodologie doit être développée afin de supporter l'analyse de type FMEDA (<u>Failure Mode Effect and Diagnostic Analysis</u>) incorporée dans l'outil « <u>Medini</u> <u>Analyze</u> ».

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.