
Yet another introduction to linear dynamical systems
control: From identification and approximation to digital

control

C. Poussot-Vassal and P. Vuillemin

March 2020

Abstract

This report aims at presenting (yet) a(nother) methodology to design and implement a
linear controller for linear dynamical systems on practical applications. The specificity of this
report is that authors try to cover (obviously in a non exhaustive way) a wide range of control
engineering fields. Indeed, the main purpose is to give a quick overview of standard control
engineer approaches to non familiar readers. More specifically, using a simple toy example,
we discuss the main steps control engineers usually follow. Namely, (i) the excitation signals
construction, (ii) the (continuous-time) linear model construction and approximation, (iii) the
(continuous-time) control design, and finally, (iv) its time-domain discretisation and control
signal modulation in view of practical implementation. This report is clearly user-oriented
and thus focuses on practical aspects (using Matlab code) rather than on theoretical ones,
let to the reader’s curiosity with few but relevant references.

1 Motivation and framework
As stated in the abstract, we will consider dynamical systems and control design through the
lens of continuous-time linear functions. Readers should keep in mind that nonlinear systems
theory and methods exist but, to the authors feeling, may be viewed as more tedious to apply in a
systematic way1. The discrete-time (or sampled-time) will be briefly discussed in the last section.

1.1 Assumption and framework
Generally speaking, this report considers finite order Multiple Input Multiple Outputs (MIMO )
nu inputs ny outputs Linear Time Invariant (LTI ) dynamical systems denoted Σ described by a
complex, or frequency-domain, transfer function H,

H : C→ Cny×nu , (1)

which maps linearly the inputs u to the outputs y as,

y(s) = H(s)u(s) (2)

This mapping can also be seen from a time-domain perspective as a set of first-order Differential
Algebraic Equations (DAE ) described by a descriptor realisation S,

Eẋ(t) = Ax(t) +Bu(t) and y(t) = Cx(t), (3)

where x(t) ∈ Rn denotes the internal variables (the state variables if E is invertible), u(t) ∈ Rnu

and y(t) ∈ Rny are the input and output signals, respectively, and E,A ∈ Rn×n, B ∈ Rn×nu and
1Beside, they are far from the authors know-how.
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C ∈ Rny×n are constant matrices. It is common to name (E,A) as the dynamical matrices, while
B and C are the input and output ones.

The external, frequency-domain description of Σ is related its internal, time-domain description
by the expression of its transfer function H w.r.t. the matrices of the realisation S when the pencil
(E,A) is regular,

H(s) = C (sE −A)−1B. (4)

Figure 1 provides a graphical view of the system Σ, as well as its (i) external representation H
from u to y and (ii) its internal view S, including x.

Dynamical system Σ
described by H and S

x =

 x1(.)
x2(.)
...




y1(.)
y2(.)
...

yny (.)

 = yu =


u1(.)
u2(.)
...

unu(.)



Figure 1: Graphical view of a (linear) dynamical system with inputs u, outputs y and internal
variables x.

Readers may note that unlike most control textbooks, the internal representation (3) does not
contain any D term in the output while there is a matrix E in the dynamical equation. It turns
out that the description (3) can encompass the D matrix and actually allows to describe a wider
class of systems (see e.g. [1, 2] for interesting discussion on this topic).

As schematised in Figure 1, continuous MIMO LTI dynamical model (or system) Σ defines an
”input-output” map associating an input signal u to an output one y by means of the convolution
operation,

y(t) = h(t) ∗ u(t) =

∫ ∞
−∞

h(t− τ)u(τ)dτ,

where h(t) is the impulse response of the system Σ. It is (strictly) causal if and only if h(t) = 0
for (t ≤ 0) t < 0 (in this case E is full rank). Taking the Laplace transform of this input-ouput
mapping leads to equation (2) where u(s) and y(s) are the Laplace transform of u(t) and y(t),
respectively. An LTI system Σ is said to be stable if and only if its transfer function H is bounded
and analytic on C+, i.e. it has no singularities on the closed right half-plane. Conversely, it is said
to be anti-stable if and only if its transfer function is bounded and analytic on C− (see also [5] or
Chapter 2 of [8] for more details)2. When H is associated with a first order descriptor realisation
S : (E,A,B,C) as in (3), it is rational and has a finite number of singularities called poles or
(eigen-)modes of the system. These poles are the singularities of the (E,A) pencil ∀λ ∈ C as
det(A− λE). This pencil is regular if at least there exist λ such that det(A− λE) 6= 0. We call
λ an eigenvalue of (E,A) if det(A− λE) = 0.

Based on this fairly general introduction of variables and elements of linear dynamical systems
theory, the remainder of this tutorial is restricted to a simple example.

1.2 Considered use-case
For didactical purpose, the following assumption will be considered: the system Σ is a (i) stable
(ii) Single Input Single Output (SISO ), i.e. nu = ny = 1 and (iii) described by strictly proper
and rational function (E is full rank and thus does not admit a direct feed-through term). Authors
stress that while assumptions (i)-(ii) are chosen for educational purpose, assumption (iii) is also
related to more complex issues omitted here and where details may be found e.g. in [9, 2].

2At this point, one may admit that different stability notions exist: internal, input-output. . . Once again, this is
out of the scope of this report.
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In this report, a simple yet interesting second order LTI SISO system Σ use-case is considered.
Let us assume that the system Σ to be studied is described by the (unknown) following transfer
function G and realisation S,

y(s) = G(s)u(s)

=
k

s2/w2
0 + 2ds/w0 + 1

u(s)

=
[
0 w2

0

]︸ ︷︷ ︸
C

(
sI2 −

[
−dw0 w0

√
1− d2

−w0

√
1− d2 −dw0

])−1
︸ ︷︷ ︸

(sE−A)−1

[
k/w0

√
1− d2
0

]
︸ ︷︷ ︸

B

,
(5)

where d = 0.2 is the damping ratio (note that it is standard to consider 0 < d < 1), ω0 =√
ω2
1 + d2rad/s (where ω1 = 10rad/s is the cut-off frequency) and k is the static gain. Such a

model represents a simple weakly damped (d <
√
2/2) second order model system with cut-off

dynamic at ω1. The corresponding Bode diagram, representing the response of G(s) for varying
values of s = ıω, where ω ∈ R (i.e. the response of the complex function along the imaginary axis
ıR) is given in the following Figure 2, where the gain is shown on the top frame while the phase
on the bottom one. Note that the gain exhibits a bump at f1 = ω1/(2π) due to the low damping
d value, a static value above 0dB and a roll-off below ω1. Regarding the phase, a sharp drop of
−π at f1 is also observed (note that a x-axis log-scale and gain y-axis in dB are standardly used).

The associated realisation is represented by two first order ODE indicating that two storage
states are embedded in the system. Note that the choice of the (E,A,B,C) quadruple, being
constant linear matrices in (Rn×n,Rn×n,Rn×nu ,Rny×n), has been done among an infinite set of
possibilities. Indeed, by considering any full-rank matrix V ∈ Rn×n, the projected realisation
(V −1EV, V −1AV, V −1B,CV ) leads to the same transfer function, and thus input output relation.
The following Matlab code provides a way to define such a system.

% Model d e s c r i p t i o n as Trans fe r Function and State−Space
d = . 2 ;
k = 2 ;
w1 = 10 ; w0 = sqrt (w1^2+d^2) ;
G = t f (k , [ 1 /w0^2 2∗d/w0 1 ] ) ; G. InputName = ’u ’ ; G. OutputName = ’y ’ ;
Gss = s s ([−d∗w0 w0∗sqrt(1−d^2) ; −w0∗sqrt(1−d^2) −d∗w0 ] , [ 0 ; w0^2 ] , [ k /(w0∗sqrt(1−d^2)

) 0 ] , 0 ) ;

Listing 1: Example file start2ndOrder.m: G model description.

1.3 Reader target and some advertisement
As stated in the abstract, this reports tries to cover a wide spectrum of linear signal processing
and control theory aspects, and reader should be aware that the present document is not complete
at all and should be amended and enhanced in many ways. It is principally meant at providing
very basic elements that may be considered as control starting points for non experts people. The
report is centred on the engineering soundness and thus focuses on the practical aspects rather
than on the theoretical ones, even if authors try paying attention in giving accurate explanations,
especially in the transitions from a part to an other.

1.4 Report structure
The present report follows the - control engineer-like - classical flow: Section 2 exposes some
elements about the generation of exciting signals, i.e. signals that can be used for model con-
struction. Based on these excitation signals and the resulting measured outputs, Section 3 then
explains how an (approximate) LTI model (Ĥ) H of the system Σ can be constructed. Hope-
fully, (Ĥ) H should be identical to G as defined in (5). As it is now well admitted that it is an
efficient and versatile tool for linear model approximation and reduction, the lens of the model
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Figure 2: Frequency response gain (top) and phase (bottom) of the example model G (G in the
code).

approximation and interpolatory framework is chosen to be the identification and approximation
main tool3. Section 4 then describes a model-based continuous-time linear controller K design
approach, using theH∞-norm minimisation criteria. Again, such a choice has been done purposely
considering the author’s background in control theory, but (m)any other approach can be used and
be somehow approached with the same philosophy. One major benefit of the H∞ approach is that
it is relatively simple to understand and the available tools for optimising the control structure
and gains are powerful, very versatile and accessible to many engineers. This section closes with
the discretisation Kz of the aforementioned controller and provides preliminary comments on the
hybrid interconnection (continuous/sampled). Section 5 present an issue encountered by many
practitioners, namely the modulation of the control signal to tackle the case where actuators are
pulsed (on/off). This modulation choice is done considering the numerous discussions authors got
from practitioners and therefore seems of interest. As it is a fairly complex point, this last section
is mainly based on simulations and the discussion remains preliminary. Conclusions and some
questions are discussed in Section 6.

3This section voluntarily does not mention explicitly model identification as it is out of the author’s knowledge.
The model interpolation approach is used instead. Even if authors are convinced that these approaches are really
close, obviously this choice can be discussed - over pages and pages - but it is out of the topic of the note.
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2 Identification signals
The main aim of identification signals is to generate an input signal exciting enough to enable an
accurate identification of the underlying system, here represented by a linear second order model
G. Such a signal should then satisfy some hypothesis such as applicability, be exciting enough
and simple. In general for linear systems, the frequencies of identification signal should excite all
the relevant frequencies of the system. Once again, as it is quite far from the main expertise of the
authors, reader should take the following section as a naive, but simple to reproduce, approach.

2.1 Reminders on Fourier transform
As most of the report is based on the frequency-domain representation of dynamical systems, let
us first recall some basic elements on Fourier transform. Given signal x(t) the Fourier transform
reads

x̃(f) = TF (x(t)) =

∫
R

x(t)e−2πıftdt

= |x̃(f)| eıφ(f),
(6)

where the complex variable x̃(f) is the spectrum of x(t) and where φ(f) denotes the argument of
x̃(f). The time t and frequency f are the variables embedded in the transform. Importantly, the
Fourier transform exists for any finite energy signals x(t) (it is a sufficient condition). One may
note that the dual inverse Fourier operator exists. As a remark, one can remember that signals
with small support has a large spectrum. As an illustration, given the rectangle function (note
tat such shape has some interest in application, as shown at the end of this report)

x(t) = rectT (t/T )
{

1 , ∀t ∈ [−T/2, T/2]
0 , elsewhere (7)

the corresponding Fourier transform reads

x̃(f) =
sin(πfT )

πf
= T sinc(πTf). (8)

2.2 Some exciting signal
Back to our problem, the first objective of a control engineer is to construct exciting signal that
will allow us for constructing a linear model H of the system Σ, here being G but considered as
unknown. There exists a lot of identification signals and it is actually a complete research field in
systems theory, but for simplicity, among them, one can mention the (fairly standard) following
ones:

• Pseudo random binary signal (PRBS). It consists in on/off like signals used as input. The
idea is to define a "random" sequence of these signals in order to emulate a white noise. The
longest duration should last enough to reach steady state output and the shortest should
be short enough to excite frequencies above the cut-off one of the system. The Fourier
transform of such signal should be constant over frequencies. Note that for the same reason
as the one mentioned above in the rectangular signal, to be a white (more accurately pink)
noise, a whitening filter should be combined to the random rectangular sequence, avoiding
the frequency-domain zeros embedded in the sinc function.

• Frequency chirp signal. It consists in a cosine-like function that sweeps from a low frequency
up to a high one. The signal should sweep sufficiently slowly to excite all frequencies.
Similarly to the above random binary signal, the Fourier transform covers all frequencies in
the interval of the sweep. An illustration of such a signal and its response when fed in the
example use case G is given in Figure 3.

5



0 50 100

-0.5

0

0.5

1

0 50 100

-2

-1

0

1

2

0 100 200 300

0.01

0.02

0.03

0.04

0.05

0 100 200 300

0.01

0.02

0.03

0.04

0.05

Figure 3: Chirp (frequency sweep) signal. Top: time-domain input signal u(t) (left) and out-
put measurement y(t) (right). Bottom: frequency-domain corresponding signals ũ(f) and ỹ(f),
respectively.

• Impulse signal. It consists in injecting a causal Dirac input, denoted δ(t). Theoretically, a
Dirac signal reads

δ(t) =

{
1 , t = 0
0 , elsewhere . (9)

It naturally translates as

x̃(t) = TF (x(t)) =
∫ +∞

−∞
δ(t)dt = 1. (10)

The Fourier transform of the Dirac function is a unitary gain over all frequencies. Thus, Dirac
functions encompasses all frequencies (note that a continuous signal contains the frequency
zero, only). In practical signal processing, it is used for frequency modulation. In practice,
such a signal is impossible to generate and a rectangular signal with small width is preferred.
The resulting spectrum is generally a cardinal sine like and thus also a pink noise. An
illustration of such a signal and its response when fed in the example use case G is given in
Figure 4.
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Figure 4: Impulse signal. Top: time-domain input signal u(t) (left) and output measurement y(t)
(right). Bottom: frequency-domain corresponding signals ũ(f) and ỹ(f), respectively.

Note that as we consider linear systems only, one single amplitude is enough for identification.
Obviously, in nonlinear cases, this statement is not true anymore. From the rest of the report, we
will consider results obtained when using the second exciting signal, i.e. the frequency sweep one.
The signals are obtained using the following Matlab code with inputExcitation=’chirp’.
switch inputExc i ta t i on % here = ’ chirp ’

case ’ ch i rp ’
Tsamp = 1e−2;
Tf = 1e2 ;
T = 0 :Tsamp : Tf ; % time sample
F0 = 1e−6; % lower ch i rp f requency
F1 = 2/Tsamp/10 ; % higher ch i rp f requency
T1 = T(end) ;
Uchi = mor_chirp (T, F0 ,T1 , F1 , ’ quadrat i c ’ ) ;
U = Uchi ;

case ’ impulse ’
Tsamp = 1e−2;
Tf = 1e1 ;
T = 0 :Tsamp : Tf ;
Uimp = mor_impulse (T) ;
U = Uimp ;

case ’ prbs ’
Tsamp = 1e−1;
NN = 10 ;
Trep = 5 ;
Tseq = Trep∗(2^NN−1) ;
Tf = 1∗Tseq ;
T = 0 :Tsamp : Tf ;
M = f loor (Trep/Tsamp/NN) ;
Uprbs = mor_prbs (T,NN,M) ;
U = Uprbs ;

end
Y = ls im (G,U,T) ; % s imulate the system G with U, over T

Listing 2: Example file start2ndOrder.m: generate and simulate a chirp signal excitation.
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2.3 Transfer estimation
Based on the input u(t) and output y(t) signals and on their frequency equivalence ũ(f) and
ỹ(f), the cross correlation transfer can be computed. In opposition to the spectral energy density,
the cross (or inter-correlated) spectral density is a complex number which gain represents the
interaction power and which arguments represents the phase between ũ(f) and ỹ(f). A simplified
Matlab code allowing to obtain such frequency response is given in what follows.

% Frequency t r a n s f e r e s t imat i on from U to Y
Fsamp = 1/Tsamp ; % frequency sampling
Fnyq = Fsamp/2 ; % Nyquist f requency
NFFT = [ ] ;
L = numel (U) ;
FTy = f f t (Y,NFFT) ; % Four i e r trans form o f y
FTu = f f t (U,NFFT) ; % Four i e r trans form o f u
F = linspace (0 , 1 , f ix (L/2)+1)∗Fnyq ;
Iv = 1 : numel (F) ;
FTy = FTy( Iv ) ;
FTu = FTu( Iv ) ;
Txy = FTy./FTu; % d i s c r e t e t r a n s f e r e s t imat ion
H( 1 , 1 , : ) = Txy ;
W = 2∗pi∗F; % pu l s a t i on po in t s

Listing 3: Example file start2ndOrder.m: a simplified frequency transfer response computation.

When applied on the chirp signal case presented above, the above discrete frequency response
estimation Φi = y(ıωi)/u(ıωi) ∈ Cny×nu (denoted H), estimated at samples ıωi = ı2πfi (W),
where i = 1, . . . , N , is obtained and leads to Figure 5. Interestingly, when comparing the the
original linear system G, the overall dynamic seems well cached, even if some errors appear in
high frequencies (close to the Nyquist frequency). This observation is consistent with the fact that
the chirp function is exciting enough. Note that the frequency plot stops at the Nyquist frequency
fNyquist = fs/2 = 50Hz, where fs = 100Hz. Due to the sampling effect, above this Nyquist, the
spectrum repeats with this frequency periodicity.

By analysing the frequency response of G and its estimated discrete samples Φi, some differ-
ences are observed, even with no noise considered in the measurements. Signal processing theory
can bring answers to this discrepancies by considering the effect of sampling and reducing it by
using more elaborate techniques. However, at this point, the transfer estimation seems acceptable.
Note that in practice, an exact model appears to be a unicorn as model validity can only be con-
sidered through the lens of (experimental) data which are affected by many uncertainties. A model
should be considered mainly w.r.t. what it will be used for. In our case, the model will mostly
serve at designing a controller, and variability should always be considered. This remark is also
linked with what people call robustness with respect to some model variability. This specific point
is not directly addressed here but interested reader may find clues and more detailed theorems in
the very complete book [11].
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Figure 5: Frequency response gain (top) and phase (bottom) of G (G) and its discrete estimation
{ωi,Φi} ({W,H}) using the chirp excitation signal.

3 Reduced model construction
As rooted on the input-output collected data from the exciting signal followed by the Fourier
transform and cross correlation transfer estimation, one now has access to the {ıωi,Φi}Ni=1 couple,
denoted {W,H}. From this basis, we are now ready to perform the model construction step. Many
techniques are tailored to this objective, but here, let us invoke the interpolatory framework to
construct a rational model H as well as its approximation Ĥ (see [2] for complete description and
presentation of "interpolatory" problem and meaning).

3.1 Data-driven approximation
Given the complex-valued input-output data collection {zi,Φi}Ni=1 or more specifically in our case
{ıωi,Φi}Ni=1 (where zi ∈ C, ωi ∈ R and Φi ∈ Cny×nu) defined as,

y(zi) = Φiu(zi) or y(ıωi) = Φiu(ıωi), (11)
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the approximation problem aims at constructing the approximate rational transfer function matrix
Ĥ mapping inputs u to the approximate outputs ŷ such that

ŷ(s) = Ĥ(s)u(s). (12)

Obviously, some objective are that (i) the reduced inputs to outputs map should be "close" to
the original i.e. for the same u, ŷ close to y in some sense, (ii) the critical system features and
structure should be preserved, and, (iii) the strategies for computing the reduced system should be
numerically robust and stable. Approximating G with (12) is a model-based approximation, while,
approximating its input-output data {ıωi,Φi}Ni=1 with (12) belongs to the data-driven family (see
[1, 9] for examples). Here we first follow the data-driven philosophy and secondly the model-based
one. In both cases, the interpolation lens of is used.

In the data-driven model approximation, the main ingredient is the Loewner framework initially
settled in [7]. Interested reader can also find details in [2] and practical clues and applications
in [9]. In brief, the Loewner approach is a data-driven method building a rational descriptor
LTI dynamical model H of dimension m of the same form as (3), which interpolates frequency-
domain data given as (11). It is rooted on the so-called Loewner and shifted Loewner matrices
which provide information on the minimal order of the interpolating underlying rational function.
The MOR toolbox provides an implementation of this method, which can be called as follows

% Approximation from data
opt = [ ] ;
opt . verbose = true ;
opt . sample = f loor ( length (W) /256) ; % undersampling to f a s t en approximation
opt . freqBand = [0 Fnyq/3]∗2∗ pi ; % frequency band o f approximation
opt . ensureStab = true ; % en f o r c e model s t a b i l i t y
[ Hi , in fo_i ] = mor . l t i ({W,H} , [ ] , opt ) ; % [ ] means that the exact order model i s

sought

Listing 4: Example file start2ndOrder.m: data-driven model construction.

On the basis of the frequency W (i.e. ıωi) and corresponding frequency responses H (i.e. Φi) set,
the above code computes Hi (i.e. H), a minimal order interpolating rational function equipped
with a descriptor state-space realisation. With the arguments provided in the mor.lti routine, the
approximation is done up to the frequency fNyquist/3 (indeed when analysing the data obtained
during the transfer function estimation, strange behaviour is observed after this frequency and are
thus discarded in this step), data are under-sampled (for numerical simplicity) and the output Hi
model is forced to be input-output stable. The following information are also listed.

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| MOR Toolbox |
| Loewner − Loewner I n t e r p o l a t i o n Algorithm |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Right data : { la_i , r_i ,H( la_i ) =w_i } i = 1 . . . k |
| Le f t data : {mu_i , l_i^T,H(mu_i)^T=v_j^T} j = 1 . . . q |
| |
| Loewner matrix real form i s computed from complex data |
| A l l rank cond . not checked : con s id e r d i r e c t i o n s change |
| Rat iona l function dimension (n) : 68 |
| Mc Mi l l i an degree (nu) : 59 |
| Minimal r e a l i z a t i o n degree ( r ) : 58 |
| r~=nu : D or polynomial case |
| S e l e c t ed order : 58 |
| RHinf sigma/gamma : 0 . 3587/0 .3587 ( optimal ) |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Briefly, the above information set displayed after executing this MOR toolbox code mainly
indicates that an order n = 58 of function H (Hi) has been obtained. This order is automatically
computed by the procedure. At this point, a model H of dimension n = 58 is then obtained.
Of course, considering the original system G (of oder 2), such an order is way too large, but
considering the interpolatory objective this not specifically strange. We won’t enter into details
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here and will focus our attention on its frequency response, later presented on Figure 5, showing
that it really well capture the data collected, and restitute the behaviour of G (obviously with
a way too large function). As this function is of high order, in view of control design, it is well
admitted that a reduction step is necessary. Indeed, most of the control methods are very limited
to model with low order models and numerical accuracy is expected with simpler models.

3.2 Model reduction
As rooted on the obtained interpolated model H (Hi), a nu inputs, ny outputs linear dynamical
system described by the complex-valued function from u to y, of order n (n large or ∞)

H : C→ Cny×nu ,

the model approximation problem consists in finding Ĥ of order r � n

Ĥ : C→ Cny×nu ,

that well reproduces the input-output behaviour and equipped with realisation

Ĥ(s) = Ĉ(sÊ − Â)−1B̂,

where Ê, Â ∈ Rr×r, B̂ ∈ Rr×nu and Ĉ ∈ Rny×nr, are constant matrices. One standard way to
deal with this problem is to consider the H2 model approximation problem given as follows.

Ĥ := arg min
G ∈ H2

rank(G) = r � n

||H−G||H2

Such a problem can be solved using the MOR toolbox through the mor.lti interface, as
detailed in the following code, where one aims at finding an optimal model Ĥ (Hr) of dimension
r = 2, on the basis of H (Hi). Here the order two has been selected for illustration purpose, but as
H (Hi) is of dimension n = 58, different choice may also have been done. Still, as the considered
example G is a second order, let us continue with this assumption.

% Model order r educt i on
[ Hr , in fo_r ] = mor . l t i (Hi , 2 , opt ) ;

Listing 5: Example file start2ndOrder.m: model reduction step.

Applied on the obtained H (Hi) model, the above code leads to the following output, illustrating
among other, the iterative aspect of the approach.

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| MOR Toolbox |
| ITIA − I t e r a t i v e Tangent ia l I n t e r p o l a t i o n Algorithm |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Or i g i na l system : 58 s ta t e s , 1 input ( s ) , 1 output ( s ) |
| Reduced system order : 2 |
| H2(W) norm error : not checked |
| Frequency bound : [ 0 104 . 7 2 ] rad/ s |
| S h i f t s e l e c t i o n : automatic |
| S ta r t : 1 /1 |
| I t e r a t i o n Unconv . s h i f t s Delta Hr |
| 1 2 − |
| 2 2 151 .63 |
| 3 0 0 .14 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

After convergence, the obtained models H (Hi) and Ĥ (Hr) Bode responses are shown on
Figure 5. Clearly, it illustrates that the model G is well captured by H of dimension 58, but also
by Ĥ of order 2, being the same order as the original G.
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Figure 6: Frequency response gain (top) and phase (bottom) of the original data (blue +), original
model G (solid black), full order interpolated model H (Hi dashed red) and reduced order model
Ĥ (Hr dashed pink).

One interesting complement concerns the pencil associated to the dynamical matrices couple
for all models, G, H and Ĥ. While the interpolating full order model H exhibits 58 singularities,
both the G ad Ĥ have only two of them. Even more interestingly, these two last models have
the exact same eigenvalues, as shown on Figure 7, meaning that on the sole basis of system Σ
excitation plus model interpolation and approximation, one is able to recover the original model
dynamical information without knowing it a priori. This last statement is a very strong one and
is obviously valid in linear dynamical systems theory only. It is one of the real strength of model
approximation in the linear domain.
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Figure 7: Eigenvalues of the original model G(s) (black ×), full order interpolated model H (red
·) and reduced order model Ĥ (pink square).

4 Control design (H∞-norm oriented)

On the basis of the simplified model obtained Ĥ (Hr), being as accurate as possible but also as
simple as possible, we are now ready to design a controller to achieve some closed-loop perfor-
mances. Here, our simple objective is to make our output y track an exogenous reference signal
denoted r. Such an objective is a fairly standard one and our aim is more to illustrate in practice
how this can be easily done using existing numerical tools. Indeed, authors believe that extension
of this problem to more complex cases can be "easily" done once this one well mastered.

4.1 Preliminary words
The control design for linear systems is a wide problem on which many researchers and practitioners
have proposed methodological results and numerical schemes to achieve different objectives. In
this report we only focus on the so called H∞ control approach, well known in the robust control
community for its fantastic robustness and performance definition versatility (see e.g. [4, 11] for a
very good starting point). Here we follow the H∞ philosophy which objective is, on the basis of
the simplified model Ĥ, to design a controller K such that,

K := arg min
K̃ ∈ H∞

K̃ ∈ K

||Fl(Ĥ, K̃)||H∞ (13)

where Fl(·, ·) is the lower fractional operator (see [11, 6] for a good insight), K is the class of
controller considered (we will come back to this later in this section) and H∞ denotes either the
space of complex-valued functions with bounded supremum over the imaginary axis or the norm
associated. More specifically, Try(Ĥ) = Fl(Ĥ, K̃)

∣∣∣
K̃=K

is nothing but the closed-loop illustrated
on Figure 8, when the controller is defined as

u(s) = K(s)e(s) = K(s)(r(s)− y(s)),

where e is the error signal and r, the reference one.
Remembering that for SISO systems the H∞ norm is the peak value of the Bode gain re-

sponse, as it problem (13) is not really interesting to solve. Indeed minimising the gain of the
interconnection shown in Figure 8 is not specifically relevant. This why instead of solving (13), one

13



K(s) Ĥ(s)
u(t)r(t) e(t) y(t)

Figure 8: Closed-loop scheme of Try(Ĥ,K), being the interconnection of K with model Ĥ, involved
in the synthesis step.

aims at solving a modified version of it, through what is generally called, the generalised problem,
involving the generalised plant. Such a notion is more detailed in the sequel.

4.2 The H∞-norm oriented control design
One essential ingredient in linear control, and so it is in H∞ control, is the generalised plant con-
cept. Basically, it consists in constructing a plant including the model Ĥ and a set of performance
output Wo and input Wi weighting functions. These weighing functions are interconnected to the
plant’s model and constitute the basis of the control optimisation process. Practically, they shape
the interconnection to be minimised where performances and control objectives are encapsulated
in these weighting functions (again, reader may refer to [11]). Before illustrating such a generalised
plant and how it is constructed, let us just recast the original H∞ control problem (13) now as

K := arg min
K̃ ∈ H∞

K̃ ∈ K

||

T(Ĥ,K̃)=Fl(P,K̃)︷ ︸︸ ︷
WoFl(Ĥ, K̃)Wi ||H∞ (14)

where Wo and Wi are designer parameters shaping the closed-loop transfer. At this point it is
important to note that the selection of Wo and Wi can be viewed as an "art" since they completely
affect the result in an indirect way. Indeed, engineers are often required to modify the weights
and re-optimise, observe the result, and keeping iterating until the expected solution is reached.
Still, as we will see in the considered example, some intuitions can be felt when practicing a bit.
In the following code, and keeping in mind the tracking objective we construct such a generalised
plant T(Ĥ, K̃) = Fl(P, K̃). This is done by first defining the P (P) operator as follows.

% Construct ion o f the g en e r a l i s e d p lant embedding the performances
alpha = 1e3 ;
wc = 1 ;
Wu = t f ( [ 1 /wc 1 ] , [ 1 / ( wc∗ alpha ) 1 ] ) ; % weight the con t r o l s i g n a l
We = 10/ t f ( [ 1 0 ] , [ 1 / 1 e0 1 ] ) ; % weight the t ra ck ing e r r o r s i g n a l
systemnames = ’Hr We Wu’ ; % dec l a r e the dynamical systems
inputvar = ’ [ r ; u ] ’ ; % de c l a r e the input s i g n a l s so r t ed as [w u ]
outputvar = ’ [Wu; We; r−Hr ] ’ ; % de c l a r e the output s i g n a l s so r t ed as [ z y ]
input_to_Hr = ’ [ u ] ’ ; % input o f the system Hr
input_to_Wu = ’ [ u ] ’ ; % input o f the c on t r o l weigh Wu
input_to_We = ’ [ r−Hr ] ’ ; % input o f the t ra ck ing e r r o r weight We
c l e anup sy s i c = ’ yes ’ ; % remove from workspace s y s i c v a r i a b l e s
P = s y s i c ; % c r ea t e the sysetm in t e r c onne c t i on

Listing 6: Example file start2ndOrder.m: P (P) matrix transfer construction.

Following the above code, we define and interconnect two functions Wu (Wu) and We (We) as
weights on the control signal u and error signal e respectively. These weights lead to the new fictive
outputs zu and ze and the resulting generalised model P now embeds the following input-output
transfers  zu

ze
r− y

 =

 0 Wu

We −WeĤ

1 −Ĥ

[ r
u

]
= P

[
r
u

]
, (15)
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where P ∈ C3×2 is a complex-valued matrix function completely defined by the model Ĥ and the
weights defined as

Wu =
s+ 1

s/1000 + 1
and We = 10

s+ 1

s
,

being a high pass filter with cut-off frequency at 2πHz and an integral-like with cut-off also at
2πHz, respectively (we will come back later on the reason for using such performances). With
reference to (15), reader may note that the first two outputs are the performances on the control
signal tracking error respectively and that the last output is the measurement. Similarly, the
first input is the reference while the second one is the control signal. A more systematic way to
represent P is then given as [

z
e

]
= P

[
w
u

]
,

where z is the performance output vector gathering the variables to control, or more specifically to
minimise (here zu and ze) and w the exogenous signals vector gathering references, disturbances
(here only the reference r). Now P has been described, let us define Ktilde, the controller K̃
structure we want to optimise. Here, without entering into technical considerations, we chose a
SISO (we measure e = r−y and control u) controller of dimension nc = 2. In addition we select
a controller with no direct feedthrough, e.g. a full E matrix. The following Matlab code stands.
% Cont r o l l e r s t r u c tu r e d e f i n i t i o n
ncon = 1 ; % number o f c on t r o l v a r i a b l e s
nmeas = 1 ; % number o f measured v a r i a b l e s
nc = 2 ; % number o f i n t e r n a l v a r i a b l e s
Kt i l e = l t i b l o c k . s s ( ’ Kt i lde ’ , nc , ncon , nmeas ) ;
Kt i l e . d . Free = zeros ( ncon , nmeas ) ;
Kt i l e . d . Value = zeros ( ncon , nmeas ) ;

Listing 7: Example file start2ndOrder.m: definition of the controller K̃ (Ktilde) structure. This
script defines in some sense the K function space, giving the admissible K̃ set.

Previously, in (14), the space K of admissible controllers was introduced. Such a space is
somehow defined with the above code by considering the space of SISO controllers of dimension
two with no direct feed-through. More specifically, one seeks a controller K embedding a state-
space model as ([

1 0
0 1

]
,

[
a1 a2
a3 a4

]
,

[
b1
b2

]
,
[
c1 c2

]
, 0

)
,

where all coefficients ai, bi and ci are real and considered as design variables. Up to now, one has P,
being a known transfer matrix solely defined by the model Ĥ and the weighting functions (Wi = 1
and Wi = blkdiag(Wu,We)), and K̃, a structured controller with gains to be optimised. Then
we have all the ingredients to set up our (once again modified) H∞ control problem as follows.
% Model−based Hinf−c o n t r o l l e r op r im i sa t i on ( h i n f s t r u c t )
T = l f t (P, Kt i l e ) ; % lower LFT
Wk = 1e−9∗ t f ( 1 , 1 ) ; % almost unconstra ined gain
Text = append (T,Wk∗Kt i l e ) ; % en f o r c e ’K’ s t a b i l i t y
opt ion = h in f s t ru c tOpt i on s ( ’ Display ’ , ’ i t e r ’ , . . .

’ RandomStart ’ , 0 , . . .
’ MaxIter ’ ,500) ;

[ CLopt ,gamma, info ] = h i n f s t r u c t (Text , opt ion ) ;
K = ss (CLopt . Blocks . Kt i lde ) ;

Listing 8: Example file start2ndOrder.m: construction of the extended generalised plant T (both
T and Text) and optimal values of K (K).

More in details, the above code now considers an extended version of the H∞ problem, slightly
different to (14), formulated as follows.

K := arg min
K̃ ∈ H∞

K̃ ∈ K

||T(Ĥ, K̃)||H∞
||K̃Wk||H∞

(16)
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where Wk is an additional weighting function (here a simple gain) applied directly on the controller
K̃ to enforce the transfer K̃Wk to be stable. In the case described by (16), the two performance
channels T(Ĥ, K̃) and K̃Wk are appended, leading to the Text variable, gathering the two ob-
jectives. Problem (16) is (NP-)hard to solve (so was also (14)) and has been the subject of many
research contributions. However, thanks to the developments of the hinfstrut routine embedded
in the Matlab software based on the seminal contribution [3], a numerically robust solution can
be obtained in a resonable time. The above code first computes the extended generalised variable
Text and then calls the hinfstruct routine to obtain K, the optimal controller K, solving problem
(16).

Then, such code leads to the following informations (note that values may differ from a version
and computer to an other).

I t e r 1 : Object ive = 347 .3 , Progres s = 100%
I t e r 2 : Object ive = 327 .5 , Progres s = 5 .7%
. . .
I t e r 71 : Object ive = 14 .94 , Progres s = 8 .3 e−05%
Fina l : Peak gain = 14 .9 , I t e r a t i o n s = 71

Some c losed−loop po l e s are marg ina l ly s t ab l e ( decay ra t e near 1e−07)
Warning : Gain goa l : Feedback con f i g u r a t i on has f i x ed
i n t e g r a t o r s that cannot be s t a b i l i z e d with a v a i l a b l e tuning
parameters . Make sure the se are modeling a r t i f a c t s ra the r
than phy s i c a l i n s t a b i l i t i e s .

The last warning is not an issue in our case. Indeed, it states that some instabilities cannot
be controlled. In our case, this is caused by the We weight function exhibiting an integral action
and thus P has an eigenvalue in zero being uncontrollable.

K(s) G(s)
u(t)r(t) e(t) y(t)

Figure 9: Closed-loop scheme of Try(G,K), being the interconnection of K with model G, involved
in the validation step.

Now that an optimal controller K (denoted K) has been obtained, we can analyse the resulting
closed-loop. More specifically, the following code constructs the closed-loop as shown on Figure
9, involving the original model G. The associated Bode gain and step responses are shown on
Figures 10 and 11.

% Closed−loop crea ted with G ins t ead o f Hr , looped with K ( continuous−time )
systemnames = ’G K’ ;
inputvar = ’ [ r ] ’ ;
outputvar = ’ [G; r−G; K] ’ ;
input_to_G = ’ [K] ’ ;
input_to_K = ’ [ r−G] ’ ;
c l e anup sy s i c = ’ yes ’ ;
CL = s y s i c ;
CL = ba l r e a l (CL) ;

Listing 9: Example file start2ndOrder.m: construction of te closed-loop model when original
system G looped with K.
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Figure 10: Bode gain of the original model G (blue) and closed-loop Try(G,K) (red). Note the
static gain and peak damping.
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Figure 11: Step response of the original model G (blue) and closed-loop Try(G,K) (red). Note
the static gain and peak damping.

One observes on Figure 10 that the bump present on te open-loop original G model has been
attenuated (i.e. damped) and the static gain is now at 0dB, meaning that the output y should track
r in steady-state. In addition, Figure 11 assesses these observations, showing the step response
of G and Try obtained using G looped with K. One important validation when applying H∞
control design is the validation of the weighting constraints. This is done on Figures 12 and 13,
where the transfer Tre and Tru are plotted, and compared to the weighting functions γ/We and
γ/Wu respectively (where γ denotes the H∞ norm obtained when solving (16)).
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Figure 12: Bode gain of the weighting function on the tracking performance γ/We (black dashed)
and closed-loop Trze(G,K) (red).
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Figure 13: Bode gain of the weighting function on the control performance γ/Wu (black dashed)
and closed-loop Trzu(G,K) (red).

First, one should note that both transfers are upper bounded by the corresponding weighting
functions (black dash dotted), assessing that the considered frequency templates T(Ĥ,K) (indeed
T(G,K)) are satisfied, i.e. ||T(G,K)||H∞ ≤ γ/Wx where x = {u, e}. The second objective being
||K||H∞ ≤ γWk is also (largely since Wk = 10−9) satisfied. Remember that such a objective was
used only to ensure that the obtained controller K ∈ H∞, i.e. is stable.

At this point, let us just make a quick remark on the section of Wu and We. The first one
affects the control signal u and is thus selected so that 1/Wu rolls-off in high frequencies to avoid
noise amplification. Similarly, the We function, acting on the error signal r − y, is standardly
selected so that in low frequency 1/We has a low (zero) gain to ensure no steady-state error up
to a certain cut-off frequency (being the time response) and constant gain at infinity to monitor
the margin performances (as shown in the next part).
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4.3 A glimpse of margin
Entering in a complete margin analysis is not the objective of this simple report (interested reader
should refer e.g. to [11, 6]). Still, to give a grasp of the concept, margins are generally computed
on the following transfer (availability and/or complexity usually make the decision),

L(s) = G(s)K(s) or L(s) = H(s)K(s) or L(s) = Ĥ(s)K(s)

which represents the loop interconnection without closing the loop. This transfer is actually very
important to monitor in practice. Actually, a whole class of design method, called loop-shaping,
are rooted on this transfer and aim at shaping it through adequate filtering. Among interesting
margin, the modulus margin, denoted ModMargin, is defined as

MM =
1

||1−Try||H∞
,

is a unifying quantity of the gain and phase margins and represents the maximal gain of the so-
called sensitivity function, being the transfer from the reference to the error (and thus connected
to the weighting function We). These last components can be obtained through the allmargin
routine embedded in Matlab and recalled hereafter.

% A gl impse o f margin ( continuous−time )
L = G∗K;
[ reNyq , imNyq ] = nyqui s t (L) ;
a l lmarg in (L)
ModMargin = 1/norm(CL(2 , 1 ) , i n f ) ;

Listing 10: Example file start2ndOrder.m: some margins.

Note that complete books are dedicated to the robustness, margin, and related points in the
control literature. It is quite hard sorting them, but reader should keep in mind that many
numerical tools are embedded in the Matlab software, providing a good starting point.

>> al lmarg in (L)

ans =

s t ru c t with f i e l d s :

GainMargin : 3 .5988
GMFrequency : 11 .0321
PhaseMargin : 90 .3163
PMFrequency : 1 .3664
DelayMargin : 1 .1536
DMFrequency : 1 .3664

Stab le : 1

Figure 14 also shows the Nyquist plot of L, as well as the Nyquist point and the modulus
margin illustration. Usually, a modulus margin of 0.5 is considered as a very good one (note that
optimal LQ control for SISO systems ensures this modulus margin).
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Figure 14: Nyquist plot of the loop transfer L (solid red), Nyquist stability point (black +) and
modulus margin (black dashed circle).

4.4 Discrete-time controller and hybrid loop
Now the optimal continuous-time controller K (K) has been obtained, in view of implementation
purpose, it is needed to discretise it to obtain a sampled-system. This step is subject to many
research as well and one may refer to [10] for some insight. Without being too specific, the standard
bilinear Mobius transform (also celebrated as Tustin stransformation) is used. It basically consists
in a transformation from the s-plane to the z-plane using the following formulae

s =
2

Ts

z − 1

z + 1
,

where Te is the sampling time. In Matlab this transformation is implemented and can be obtained
as follows.

% Cont r o l l e r cont inuous vs . sampled ( d i s c r e t i s a t i o n us ing Matlab )
Ts = 1e−2; % sampling time o f the c o n t r o l l e r
K_z = c2d (K, Ts , ’ t u s t i n ’ ) ; % b i l i n e a r d i s c r e t i s a t i o n method
FR_K_z = f r e q r e s p (K_z,W) ;

Listing 11: Example file start2ndOrder.m: discretisation step using bilinear transformation.
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Figure 15: Comparison of the controller Bode response. K (K) in continuous-time (solid blue) and
Kz (K_z) in sampled-time at Ts = 10ms (red dashed).

The above code then creates the discrete-time controller Kz (denoted K_z) obtained with a
sampling time Ts = 10ms defined as follows, and for which frequency response (Bode diagram) is
given in Figure 15.

>> K_z

K_z =

A =
x1 x2

x1 1 0.001432
x2 0 .0013 −0.4662

B =
u1

x1 0.004413
x2 −0.004758

C =
x1 x2

y1 1 .522 −2.466

D =
u1

y1 0.02536

Sample time : 0 .01 seconds
Disc re te−time state−space model .

When analysing Figure 15, one first note that the continuous-time response of K is similar to
the Kz up to fNyquist = fs/2 = 1/(2Ts) = 5Hz. Moreover, as the bilinear transformation maps the
vertical axis ıR onto the unit circle, the spectrum is naturally repeated every fNyquist, resulting
in these sharp peaks in the Bode gain responses at this frequency (and its periodic multiplicities).
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Figure 16: Comparison of the controller Bode response. K in continuous-time (solid blue) and
Kz in sampled-time (red dashed). From top left to bottom right Ts = 50, Ts = 100, Ts = 200 and
Ts = 500ms.

Obviously, one can reduce the sampling time as much as possible, leading to a better frequency
response matching, but with a technical and practical limitation (and cost). A glimpse of the
impact of the sampling frequency is shown on Figure 16 which highlights the effect of decreasing
the sampling frequency. It is clear the slower the discretisation, the less the discrete controller Kz

matches the (reference) continuous one K. In addition, the phase plot is also affected, leading to
shift and delay in the loop. This point is not reported here, but it may lead to instabilities (as
illustrated in the next section). Many more remarks are available in [10] and references therein.

Kz(z)

fs

G(s)
u(tk)r(t) e(t) y(t)

Figure 17: Closed-loop scheme of Try(G,Kz), being the interconnection of the sampled Kz with
model G, involved in the validation step.

One very complex and interesting question arising at this point is to analyse the impact of such
discretisation in the closed-loop performances. With reference to Figure 17, the interconnection of
the continuous-time model G with the sampled-time controller Kz is an hybrid system blending
continuous and discrete variables. The analysis of such an interconnection is much more involved
than the study of a purely continuous-time interconnection and dedicated methods, that go way
over the scope of this report, are required.
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In the following section, this sampled controller will be interconnected to a modulation box
and analysis will be done on this (even more) complex loop. A sketch of solution and the main
ideas will be discussed. Theoretical considerations are purposely left aside.

5 Signal modulation and hybrid closed-loop validation
The points evoked in the previous sections are related to dynamical systems theory with the main
objective of constructing a digital sampled control law Kz achieving some performances. From
now, we consider that such a controller has to be implemented with an additional limitation on
the actuator capability. More specifically, here we consider the interconnection of a sampled-
time controller with a continuous-time system and the effect of a pulsed width modulation in the
actuator.

5.1 Preliminary words
Let us now consider that an actuator, between the system and the controller is no longer able
to deliver a continuously value u(t), or more specifically u(tk) (at each sample Ts), but a pulsed
value with varying duration only, being either umin or umax. This case is illustrated on Figure
18, where the PWM (Pulsed Width Modulation) block is detailed in what follows. Note that in
this section, no Matlab code is provided as this part is still under high investigation from the
authors, and description of the code would be quite complicated for this tutorial.

Kz(z)

fs

PWM

fc = Nfs

G(s)
u?(tk)r(tk) e(tk) u(tk/N ) y(tk)

Figure 18: Closed-loop scheme of Try(G,Kz +PWM), being the interconnection of the sampled
Kz with model G, where control is modulated by the PWM.

5.2 The pulsed width modulation case
The PWM block uses a rectangular impulsion signal taking values between umin and umax and
which length is modulated. This modulation results in variation of the mean u?(tk) of the signal
u?(tk) to convert. If one considers an impulsion with a high frequency fc and a duty cycleD ∈ [0 1],
the mean value of the resulting signal is given by

u?(tk) =
1

Tc

∫ Tc

0

u?(tk)dtk

=
1

Tc

(∫ DTc

0

umaxdtk +

∫ Tc

DTc

umindtk

)
= Dumax + (1−D)umin
= Dumax (for umin = 0).

(17)

Obviously, the PWM should be N ∈ N times higher than the signal u?(tk) to be modulated.
In practical applications, a simple way to generate the PWM is to use the intersection method
which simply requires a saw-tooth carrier signal denoted uc(tk), with frequency fc = fs/N and
amplitude from umin = minu?(tk) to umax = maxu?(tk), that should be compared to the incoming
signal u?(tk). When uc(tk) > u?(tk), then u(tk/N ) = umax, and u(tk/N ) = umin otherwise. In
our case, the carrier signal has the same period as the control u?(tk) and the modulated signal is
N = 10 times faster.
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5.3 Time-domain simulations
On the basis of the above controller Kz connected to a PWM block as the one described in
the previous section, following Figure 18, we are now ready to perform different time-domain
simulations to illustrate the efficiency and limitations of the such an interconnection. In the
following Figures 19 and 20-21, the outputs y and control signals u, obtained using the different
closed-loop schemes and different sampling times (Ts = {50, 100, 200, 500}ms), namely the one on
Figure 9, 17 and 18 are presented. In all cases, we use a PWM block that goes N = 10 times
faster. Moreover, the block provides umin = 0 and umax = 1 only. Note at this point that the
amplitude of the PWM also plays an important role, but this is clearly out of the linear domain
of this report.
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Figure 19: From top left to bottom right: Ts = 50ms, Ts = 100, Ts = 200 and Ts = 500ms.
Comparison of the controller step responses of the different closed-loop scheme. The continuous-
time closed-loop G-K (solid red), the hybrid continuous-sampled-time G-Kz in (solid blue) and
the hybrid continuous-sampled-time and modulated G-Kz-PWM (solid magenta).

Clearly, when sampling time increases, as shown on Figure 19, the hybrid closed-loop is diverg-
ing from the continuous one (tuned in the previous section). This is first observed by comparing
the red curve (reference) with the blue one (hybrid loop), where a loss of tracking performance
is visible. This observation is even more visible when the control signal is modulated using the
PWM block. In the last case (Ts = 500ms), the closed-loop even becomes unstable!

24



0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 20: From top left to bottom right: Ts = 50ms, Ts = 100, Ts = 200 and Ts = 500ms.
Comparison of the controller control signal of closed-loop scheme. The continuous-time closed-
loop G-K (solid red) and the hybrid continuous-sampled-time G-Kz in (solid blue).
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Figure 21: From top left to bottom right: Ts = 50ms, Ts = 100, Ts = 200 and Ts = 500ms.
Controller control signal of closed-loop scheme with the hybrid continuous-sampled-time and mod-
ulated G-Kz-PWM. The blue coloured areas represent the moments where the actuator is high.

The above observations are completed with Figures 20 and 21 illustrating the control signal
sent to the system. On Figure 20 the control signal of the discrete-time controller which sample
time is being increased leads to noticeable differences from the reference continuous one. The same
comment can be done on Figure 21 which illustrates the pulse sent to the system. These pulses,
being larger and larger due to the sampling period increased. Obviously, these observation open
the field for more investigation, that will be done in the future.

6 Conclusions
In this report, we aimed at presenting in a condensed and obviously incomplete way, a standard
approach for controller design and implementation. We tried to follow what authors believe is a
classical control-engineer approach, starting from the system excitation, model identification and
reduction, followed by a control design, and ending with some implementation issues related to a
pulsed modulation-driven actuator. The report is concentrated on linear problems and nonlinear
issues are not really faced here (unless the modulation part). Still, reader should keep in mind
that linear dynamical systems and control methods are largely enough for many applications and
mastering them is already a nice step forward.

Obviously, the report may be amended, commented and discussed according the reader knowl-
edge, but from the past discussions authors had with multiple users, we feel that such bundle
of pages can be a simple but sufficiently good starting point for many practitioners and may be
useful for starting discussions.

The objective of the authors was to provide a didactic overview for unfamiliar authors by
providing a step by step overview of the general ideas, accompanied with Matlab code involving
the MOR Toolbox and some functions available on demand.
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