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inear system identification [1]-[4] is a basic step in modern con-

trol design approaches. Starting from experimental data, a lin-

ear dynamic time-invariant model is identified to describe the

relationship between the reference signal and the output of the

system. At the same time, the power spectrum of the unmod-
eled disturbances is identified to generate uncertainty bounds on the
estimated model.

Linear system identification is also used in other disciplines, for
example, vibrational analysis of mechanical systems, where it is called
modal analysis [5], [6]. Because linear time-invariant models are a basic
model structure, linear system identification is frequently used in elec-
trical [7]-[10], electronic, chemical [11], civil [12], and also in biomedical
applications [13]. It provides valuable information to the design engi-
neers in all phases of the design process.

Starting from the late 1960s, system identification tools have been
developed to obtain parametric models to describe the dynamic
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behavior of systems. A formal framework is set up to study
the theoretical properties of the system identification algo-
rithms [1]-[3]. The consistency (does the estimated model
converge to the true system as the amount of data grows?)
and the efficiency (is the uncertainty of the estimated
model as small as possible?) are analyzed in detail. Under-
lying all these results are the assumptions that the system
to be modeled is linear and time invariant.

It is clear that these assumptions are often (mostly?) not
met in real-life applications. Most systems are only linear
to a first approximation. Depending on the excitation
level, the output is disturbed by nonlinear distortions so
that the linearity assumption no longer holds. This imme-
diately raises doubts about the validity of the results
obtained and validated by the linear system identification
framework. The term nonlinear distortions indicates that
nonlinear systems with a (dominant) linear term are con-
sidered. The deviations from the linear behavior are called
nonlinear distortions.

Moreover, because a linear model cannot capture the
nonlinear distortions, it may be necessary to identify a
nonlinear model to obtain results that are useful and reli-
able. The identification of nonlinear models requires more
data and is more involved than linear identification. Cur-
rently, identification of nonlinear systems is a hot research
topic, but the nonlinear identification framework has not
yet reached the same level of maturity as linear identifica-
tion theory [13]-[21] has. Since the cost of a nonlinear
approach is significantly higher, additional information is
needed to guarantee that there will be sufficient return on
the additional needed investments of time, money, and
human resources.

This article addresses the following issues:

» First, a nonlinearity analysis is done to look for the
presence of nonlinearities in an early phase of the
identification process. The level and nature of the
nonlinearities should be retrieved without a signifi-
cant increase in the amount of measured data.

Next, we check whether it is safe to use a linear
system identification approach, even if the presence
of nonlinear distortions is detected. The properties of
the linear system identification approach under these
conditions are studied, and the reliability of the
uncertainty bounds is checked.

Using tools provided in this article, a determination
is made about the benefits of using a nonlinear
model.

Addressing these three questions forms the outline of this
article. The possibilities and pitfalls of using a linear iden-
tification framework in the presence of nonlinear distor-
tions will be discussed and illustrated on lab-scale and
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industrial examples.

In this article, the focus is on nonparametric and para-
metric black box identification methods; however, the
results might also be useful for physical modeling methods.

Knowing the actual nonlinear distortion level can help
to choose the required level of detail needed in the physi-
cal model. This will strongly influence the modeling
effort. Also, in this case, significant time can be saved if it
is known from experiments that the system behaves
almost linearly. The converse is also true. If the experi-
ments show that some (sub-)systems are highly nonlin-
ear, it helps to focus the physical modeling effort on these
critical elements.

Three major steps are made to reach the main goals.
First, a motivational example is given, using linear sys-
tem-identification tools in the presence of nonlinear dis-
tortions. This will give a first idea about the possibilities
and problems. Next, a nonparametric nonlinear distortion
analysis is proposed and illustrated on many real-life exam-
ples. It includes experiment design, nonparametric pre-
processing, and how to deal with closed-loop measurement
conditions. In the first approach, open-loop measurement
conditions are considered; the closed-loop measurement
conditions are postponed until the end of the article. To gen-
eralize the linear framework to include nonlinear effects, a
new paradigm is developed, representing nonlinear sys-
tems using the best linear approximation (BLA) plus a
nonlinear noise source. First, an analysis of the impact of
the user choices is made (choice of the excitation signal,
the convergence criteria, and the approximation criterion).
Next, a mathematical framework is introduced to give a
sound theoretical basis for the description of nonlinear
systems using linear models. The concept of the BLA is for-
mally introduced, and an optimized measurement strategy
to measure the frequency-response function (FRF) is devel-
oped. Again, these results are illustrated by some lab-scale
and real-life examples. This is followed by a study of the
impact of nonlinear distortions on the parametric linear
identification framework. At the end of the article, a short
discussion about publicly available software is given, fol-
lowed by the conclusions.

This article is an extension of the keynote address that
was given at The 13th International Workshop on Advanced
Motion Control (AMC2014) [22].

A MOTIVATIONAL EXAMPLE

Consider the test setup in Figure 1. The electronic circuit
mimics a nonlinear mechanical system with a hardening
spring. Such a system is sometimes called a forced Duffing
oscillator [23], [24]. This class of nonlinear systems has a
very rich behavior, including regular and chaotic motions,
and generation of subharmonics. The system is excited
with an input u(t) (the applied force to the mechanical
system). The output of the system corresponds to the dis-
placement y(t).

This system can be schematically represented as a sec-
ond-order system with a nonlinear feedback. It is excited
with a low-pass random excitation with a maximum excita-
tion frequency of 200 Hz, as shown in Figures 2 and 3.
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(b)

FIGURE 1 A forced Duffing oscillator. (a) The electronic circuit
mimics a nonlinear mechanical system with a hardening spring.
Such a system is sometimes called a forced Duffing oscillator. The
system is excited with an input u(t) (the applied force to the
mechanical system). The output of the system corresponds to the
displacement y(t). The schematic representation of the system is
given in (b) as a second-order system with a nonlinear feedback.
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FIGURE 2 The system is excited with a low-pass signal, with a
maximum excitation frequency of 200 Hz. The excitation signal
consists of two parts. The tail part consists of ten subexperiments,
and each of these is a realization of a random signal and will be
used to estimate a linear model (Box—Jenkins structure) to model
the data. The arrow-like part will be used to validate the estimated
model. Observe that at the end of the arrow, the excitation level is
larger than the tail amplitude. This gives the possibility to test the
extrapolation capacity of the linear model.

Modeling the Nonlinear System

Using Linear System Identification Tools

A linear approximating model will be estimated to describe
the input-output relation of the system from the flat tail part.
The tail is split in ten subrecords with a length of 8692 points,
and each of these is used to identify a second-order, discrete-
time plant model and a sixth-order noise model using
the Box-Jenkins model structure of the prediction-error
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FIGURE 3 The amplitude spectrum of the (a) input and (b) output
signal. The spike at 250 Hz is a harmonic disturbance of the mains.

method [1], [2]. The estimated second-order plant transfer
function is shown in Figure 4.

Using this model, the output is “simulated,” which is the
identification term used to indicate that the output is calcu-
lated from the measured input. The simulation error, which
is the difference between this simulated and measured
output, is shown in Figure 5 (time domain) and Figure 6
(frequency domain) for the last subrecord. The latter shows
also the 95% amplitude bound of the simulation error that
is calculated from the estimated sixth-order noise model.
From these results, it can be concluded that a linear model
still gives a reasonable approximation of the output of the
nonlinear system. Moreover, the power spectrum of the
errors is well captured by the noise model, even if the dom-
inating error is, in this case, the nonlinear distortions of the
system. That part of the nonlinear distortions that cannot
be captured by the linear model is added to the noise dis-
turbances in the linear identification framework. The
whiteness test of the residuals in Figure 7 shows that the
estimated noise model describes well the power spectrum.
But from the cross-correlation test between the input and
the residuals, it can be seen that there are still some unex-
plained linear relations. Observe that the largest spikes
occur at negative lags, which indicates the need for non-
causal terms in the BLA [25]. Since the identification is not
done under closed-loop conditions, this behavior can only
be due to the nonlinear nature of the system.
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Validation of the Linear Model

In a second step, the identified linear model is validated on
the arrow-like part of the data. This is a challenging test
because the excitation level on part of the data exceeds that
of the tail that is used to estimate the linear model. From
Figure 8, it is seen that the errors become very large once
the excitation level exceeds that of the tail part. The approx-
imating linear model fails completely under these condi-
tions because it cannot capture the underlying nonlinear
behavior of the system outside the domain where it was
fitted to the data.

Analysis of the Model Uncertainty

The estimation procedure resulted in the plant and noise
model. From this information it is possible to also obtain an
estimate of the uncertainty on the results. In Figure 4, the
estimated standard deviation of the transfer function is com-
pared with the sample standard deviation calculated from
the repeated estimates on the ten subrecords. Both curves
look very similar, but the model-based estimated value
(green) underestimates the actual observed standard devia-
tion (red) by 50% or more because the linear identification
framework fails to estimate precisely the uncertainty in the
presence of nonlinear distortions. The user should keep in
mind that the confidence bounds are wrong whenever they
are used during the design.

Conclusions

The results from the motivational example show that even
in the presence of significant nonlinear distortions, it is still
possible to obtain a useful linear approximation with the
classical linear identification methodology. This model is
only reliable under the conditions that it is obtained.
Changing the excitation, as was done in the validation test,
can lead to very large errors. Moreover, the uncertainty
bounds that are obtained from the linear identification
framework are unreliable. When the nonlinear distortions
dominate the disturbing noise, significant underestimation
of the variances appears. This problem will be analyzed in
more detail later in this article in the section on the para-
metric estimation of the BLA.

How to Deal with Nonlinear Systems

in System Identification

From these observations, the reader could decide that, in
the presence of nonlinear distortions, it is better to build a
complete nonlinear model. But this choice is not without
its own drawbacks. Nonlinear identification is more
involved and often more time consuming. This leads to
more experiments and longer development times. More-
over, most engineers and designers are often very familiar
with linear design tools, but they are not trained in dealing
with nonlinear systems. In many cases, imperfect models
with known error bounds are still very useful to make a
design that meets the requested specifications. To follow
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FIGURE 4 The amplitude of the estimated transfer function model is
shown (the blue line). Green line: the theoretic standard deviation
of the estimated plant model, calculated from the estimated noise
model. Red line: the actual observed standard deviation of the esti-
mated plant model, estimated from the variations of the estimated
plant model over the ten subrecords. It can be seen that the actu-
ally observed standard deviation is underestimated by 4 dB by
the theoretical results. This leads to too small error bounds.
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FIGURE 5 The output of the forced Duffing oscillator is simulated
using an estimated Box—Jenkins model (plant model order two poles
and two zeros, noise model order six poles and six zeros). The blue
line is the measured output, the red line is the simulation error.
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FIGURE 6 The output of the forced Duffing oscillator is simulated
using an estimated Box—Jenkins model (plant model order two
poles and two zeros, noise model order six poles and six zeros).
The amplitude of the discrete Fourier transform of the measured
output and the simulation error are shown. The blue dots are the
measured output, and the red dots are the simulation error. The
green line is the 95% error level calculated from the estimated
noise model.
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FIGURE7 An analysis of the residuals of the Box—Jenkins fit for the
last subexperiment. (a) The autocorrelation of the output innova-
tions (the residuals that are whitened with the estimated noise
model). A few points are outside the 95% interval. For a perfect fit,
the innovations should be white, and 95% of the blue dots should
be in the yellow uncertainty band. This points to a good, but not,
perfect model. This is also confirmed by the cross-correlation
between the input and the output innovations shown in (b). Many
points are outside the 95% uncertainty interval. Moreover, strong
correlations for negative lags can be observed. This points to a
noncausal linear relation, it is possible to improve the linear model
by including also future input data. This noncausal behavior is also
discussed in [25].
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FIGURE & Validation of the model. The output of the system on a
slowly growing noise excitation is simulated. The model does well
for small inputs, but it fails for large inputs. The simulation error
becomes very large at the end of the amplitude sweep. Such a
behavior points often to nonlinear distortions.
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this strategy, tools are needed to detect, in an early phase
of the modeling process, the presence of nonlinear distor-
tions and to quantify their level. On the basis of this infor-
mation, the design engineer can decide whether a cheaper
linear identification approach can be made or if the more
expensive nonlinear identification framework should be
used. Using imperfect linear models is not a problem as
long as the user understands very well the validity of the
linear models and knows what will be the impact of non-
linear distortions. The major goal of this article is to pro-
vide this background by discussing the three main topics
that were formulated at the end of the introduction: 1)
detection and characterization of nonlinear distortions, 2)
extending the linear framework to include the effect of
nonlinear distortions, and 3) quantifying the potential
gain by switching from a linear to a nonlinear identifica-
tion framework.

DETECTION, QUALIFICATION, AND QUANTIFICATION
OF THE NONLINEAR DISTORTIONS

In this section, tools will be presented that allow the user to
detect and analyze the presence of nonlinear distortions
during the initial tests. Without needing more experiments,
the FRF of the BLA, the power spectrum of the disturbing
noise, and the level of the nonlinear distortions will be
obtained. All these results are obtained from a nonpara-
metric analysis so that no user interaction is needed. At the
basis of the proposed solution is the use of well-designed
periodic excitations. The restriction to periodic signals is the
price to be paid to access all this information. The user can set
the desired frequency resolution and desired power spec-
trum of the excitation signal. The phase will be chosen ran-
domly on [0, 27). First, the response of a nonlinear system to
a periodic excitation is studied, and then how to design good
periodic excitation signals is explained. Eventually, these sig-
nals will be used to make a nonparametric distortion and
disturbing noise analysis.

The nonlinear distortion analysis is initially made under
open-loop measurement conditions. The discussion of how
to operate under closed-loop conditions is postponed,
because to do so the concept of BLA, which will be intro-
duced later in this article, is needed.

The Response of a Nonlinear

System to a Periodic Excitation

A linear time-invariant system cannot transfer power from
one frequency to another. In contrast, a nonlinear system
can transfer power from one frequency to another. Under-
standing this power transfer mechanism is an essential
tool in the detection and analysis of nonlinear distortions
[26]. Consider a cosine signal passed through a cubic static
nonlinear system y = u°

u(t) =2coswt = e/ + 7.
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The signal has a positive and negative frequency, as
shown in Figure 9. The steady-state output of the nonlin-
ear system is

y(t) = u(t)® = (@ +e7™) (e + e (e + e 7).

In the calculation of this product, terms of the form
etietetiote appear [Figure 9(b) for o = 1],
resulting eventually in the frequency components -3, -1, 1,
3, as shown in Figure 9(c).

This result can be generalized. Consider a nonlinear
system y = u* excited at the frequencies +wy k=1,..., F.
The frequencies at the output of such a system are given by
making all possible combinations of a frequencies, includ-
ing repeated frequencies, selected from the set of 2F excited
frequencies

tjot _ ej(iwimim)[

o
z wr, with or € {—wr,...,—w1, @1, ..., ©F}. )
i=1
Every static nonlinearity y = f(u) can be approximated
arbitrarily well in least-squares sense, under some regular-
ity conditions, by a polynomial yr = Zzzl aqu’®

limp_E.{ Iy _yPlz} =0,

for some specified classes of inputs. On each of the mono-
mial terms a,u“ in the sum, the previous analysis can be
applied, and hence it is very simple to know all the frequen-
cies that can appear at the output of a static nonlinear system.

The result can be further generalized to dynamic non-
linear systems, using Volterra series [18]. A formal develop-
ment is given in [3, pp. 74-75] and illustrated in a set of
Matlab exercises in [4]. Under some regularity conditions,
the Volterra series can approximate arbitrarily well fading-
memory systems and discontinuous nonlinear systems
[27]. Because a periodic input results in a periodic output
with the same period, it is clear that a Volterra series cannot
be used to describe a chaotic system because chaotic sys-
tems have no periodic output for a periodic input.

Design of a Multisine for Nonlinear Detection and
Frequency Response Function Measurements

The choice of the excitation signal is extremely important
in a nonlinear framework. The behavior of a nonlinear
system depends on both the power spectrum and the
amplitude distribution of the applied excitation signal [3],
as shown in Figure 23. In this article, signals with a Gauss-
ian amplitude distribution will be used.

Gaussian random noise excitations [Figure 10(a) and (d)]
are very popular among practicing engineers because they
seem to be simple to design. However, in this article, peri-
odic excitations are used because these signals offer signifi-
cant advantages for making a nonparametric nonlinear
distortion analysis. It will be shown later in the article, in
the section on Riemann-equivalent excitation signals, that

2 10 1 2 3

Input Qutput
Frequency Frequency
1 1 1 3
1 1 =i 1
1 -1 1 1
1 -1 —1 -1
-1 1 1 1
-1 1 —1 -1
=1 -1 1 =i
=1 -1 =i -3

FIGURE 9 (a) The spectrum of a sinosoid that is passed through a
cubic nonlinearity y = u®. The frequencies of the (c) output spec-
trum are obtained by making the sum over each of all possible
combinations of three frequencies selected from the (b) input fre-
quencies, for w = 1. Keep in mind that both the positive and the
negative frequencies should be considered.

the results obtained with the periodic excitation can also be
transferred to random Gaussian noise excitations after proper
normalization [28].

One possibility to generate a periodic signal is to peri-
odically repeat a finite segment of a random noise sequence
[Figure 10(b) and (e)]. However, using a random-phase
multisine [Figure 10(c) and (f)] [3], [4], [28] gives a much
better control over the amplitude spectrum of the excita-
tion, resulting in lower uncertainties on the measured FRF.
Consider the signal

N/2-1

_ 1 j(2akfot+ k)
uo(t)=— Uxe’ ¢ s 2
o(t) N k?%/:zﬂ ‘ ®
» N/ZZjI
=4 Ukcos(2zkfot + @),  (3)
N2, i

where ¢ =—¢rand U= Uy, Uo=0,and fo=f/N=1/T.
The sample frequency to generate the signal is f,, and T is
the period of the multisine. The phases ¢« will be selected
independently such that E e/} =0, for example by select-
ing a uniform distribution on the interval [0,27). The
amplitudes U, are chosen to follow the desired amplitude
spectrum [Figure 10(f)]. See [28] for a detailed discussion
about the user choices and the properties of these signals.
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FIGURE 10 Examples of excitation signals in time and frequency domain: (a), (d) Gaussian noise; (b), (e) periodically repeated Gaussian
noise; and (c), (f) random-phase multisine. In the frequency domain, the amplitude spectrum of the actual realization (blue) and the

power spectrum (red) is shown.

The major advantage of the random-phase multisine is that
it still has (asymptotically for sufficiently large N) all the
nice properties of Gaussian noise, while it also has the
advantages of a deterministic signal: the amplitude spec-
trum does not show dips at the excited frequencies [see
Figure 10(f)] as the two other signals do [see Figure 10(d)
and (e)]. At those dips, the measurements are very sensitive
to all nonlinear distortions and disturbing noise.

Remark

Initially, multisine excitations were introduced for the FRF
measurement of linear dynamic systems [29]. To maximize
the signal-to-noise ratio (SNR) of the measurements, an
intensive search for compact signals was made. For a given
amplitude spectrum, the phases were chosen such that the
peak value of the signal is minimized [30]. Alternatively,
well-designed binary signals could be used [31]. Although
these compact signals are superior for linear measurements,
they are not so well suited to measure the FRF in the pres-
ence of nonlinear distortions. It will be explained in this
article (see Figure 23) that the linearized measurements
depend strongly on the amplitude distribution of the excita-
tion. The specially designed multisines with a minimized
peak factor have an amplitude distribution that is close to
that of a sine excitation (a high probability to be close to the
extreme values, a low probability to be around zero, as
shown in Figure 23). Random-phase multisines are asymp-
totically (with growing number of frequencies) Gaussian
distributed, which is often preferred in applications. More-
over, it will be possible to make explicit statements on the
properties of the linear approximation and the remaining
errors for the latter case. For that reason, the focus will be
from here on random-phase multisines and random Gauss-
ian excitations. More information on the impact of the
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amplitude distribution on the linear approximation can be
found in [32] and [33].

User Guidelines

» Use random-phase multisine excitations.

» The spectral resolution f; of the multisine should be
chosen high enough so that no sharp resonances are
missed [34]. Since f, = 1/T, it sets immediately the
period length T of the multisine. A high-frequency
resolution requires a long measurement time because
at least one, and preferably a few, periods should be
measured.

» The amplitude spectrum should be chosen such that
the frequency band of interest is covered. The signal
amplitude should be scaled such that it also covers
the input amplitude range of interest.

In the nonlinear distortions are shown to be easily detected
by putting some amplitudes U} in (2) equal to zero for a
well-selected set of frequencies.

A detailed step-by-step procedure of how to generate
and process periodic excitations is given in [4, Chap. 2].

Riemann-Equivalent Excitation Signals

The goal is to characterize a nonlinear system for Gauss-
ian excitation signals, using random-phase multisines.
The design of the amplitude spectrum of the multisine
should be such that the equivalence between the random-
phase multisine and the Gaussian random noise with
respect to the nonlinear behavior is guaranteed. To do so,
the equivalence class Es, is defined that collects all sig-
nals that are (asymptotically) Gaussian distributed, and
have asymptotically, for N — oo, the same power on each
finite frequency interval. This is defined precisely in the
next definition.
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Definition 1
Riemann-equivalence class Es, of excitation signals. Consider a
power spectrum Su(Q) that is piecewise continuous, with a
finite number of discontinuities. A random signal belongs
to the equivalence class if:

1) Itis a Gaussian noise excitation with power spectrum

Su(Q).
2) It is a random multisine or random-phase multisine
such that
1 & 2 1 [e 1
Wk:Zk:wl {(E(qU(k)|)} = E/wl Su()dv+O(N™), forall ke,
with

ko = floor(f#N) and 0 < w1, w2 < 7fs.

Using the Riemann equivalence, it is possible to use
periodic random-phase multisines to characterize the
properties of the nonlinear system excited with filtered
Gaussian noise. This will be explained in the next section.

Detection, Separation, and Characterization of the
Nonlinear Distortions and the Disturbing Noise

This article presents only the basic principles of the nonlin-
ear distortion analysis; see [3] for a more detailed discussion.

Detection and Characterization

of the Nonlinear Distortions

The basic idea, which is illustrated in Figure 11, is very
simple and starts from a multisine (2) that excites a
well-selected set of odd frequencies [odd frequencies cor-
respond to odd values of k in (2)]. This excitation signal is
applied to the nonlinear system under test. Even nonlin-
earities show up at the even frequencies because an even
number of odd frequencies is added together. Odd nonlin-
earities are present only at the odd frequencies because an
odd number of odd frequencies is added together. At the
odd frequencies that are not excited at the input, the odd
nonlinear distortions become visible at the output because
the linear part of the model does not contribute to the
output at these frequencies (for example, frequencies five
and nine in Figure 11). By using a different color for each of
these contributions, it becomes easy to recognize these in
an amplitude spectrum plot of the output signal.

Disturbing Noise Characterization

In the next step, the disturbing noise analysis is made. By
analyzing the variations of the periodic input and output
signals over the measurements of the repeated periods, the
sample mean and the sample (co-)variance of the input and
the output disturbing noise can be calculated, as a function
of the frequency. Although the disturbing noise varies
from one period to the other, the nonlinear distortions do
not so they remain exactly the same. This results eventually
in the following simple procedure: consider the periodic
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FIGURE 11 A design of a multisine excitation for a nonlinear analy-
sis. (a) A selection of the excited frequencies at the input and at
the output: (b) linear, (c) even, (d) odd contributions, and (e) total
output.

u(t)

I L

u[”(t) u[2](t) u[’](t)

FIGURE 12 A periodic signal used to outline the procedure for cal-
culating the sample mean and variance.

signal u(f) in Figure 12. The periodic signal is measured
over P periods. For each subrecord, corresponding to a
period, the discrete Fourier transform is calculated using
the fast Fourier transform (FFT) algorithm, resulting in the
FFT spectra of each period U"(k), Y (k), for I=1,...,P.
Because an integer number of periods is measured, there
will be no leakage in the results. The sample means
U(k), Y(k) and noise (co)variances 6% (k), 63 (k), 63u(k) at
frequency k are then given by

) =43 U0, Y6 =3 Y00,
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Even in the presence of significant nonlinear distortions,
it is still possible to obtain a useful linear approximation with
the classical linear identification methodology.

and

50 = 57 3% U0 - oo,
GRS = PMIECRR(CIY
P A A
Gl = 5Ly > (V) - YEYUM - @)™ @
P-114

In (@), ()" denotes the complex conjugate. The variance
of the estimated mean values U (k) and Y (k) is 6% (k) /P and
63 (k) /P, respectively. Adding together all this information
in one figure results in a full nonparametric analysis of the
system with information about the system (the FRF), the
even and odd nonlinear distortions, and the power spec-
trum of the disturbing noise. Note that no interaction with
the user is needed during the processing. This makes the
method well suited to be implemented in standard mea-
surement procedures.

Combining Multiple Realizations of the Random Input

This measurement can be repeated over M realizations of
the random-phase multisine by generating each time a new
multisine excitation with another random-phase realization.
The results can then be averaged over these realizations to
obtain more reliable estimates of the distortion and noise
levels. At the same time, the standard deviation of the FRF,
due to the nonlinear distortions and the disturbing noise,
will be reduced by vM .

In [35] and [36], a detailed analysis is given of how these
ideas can be generalized to deal with initial transient
effects in single-input, single-output and multiple-input,
multiple-output (MIMO) FRF measurements.

User Guidelines

» Design a random multisine excitation following the
guidelines specified earlier in this article.

» Excite the system with the multisine and measure
P = 2 periods of the steady-state response.

» Repeat this procedure for M successive realizations
of the random-phase multisine.

» Choose P, M such that within the available measure-
ment time the number of repetitions M is as large as
possible. This advice can be refined, depending on
the prior knowledge of the user.
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* No prior knowledge available: select P = 2, and M
as large as possible.

° Maximize the nonlinear detection ability: M = 2,
and P as large as possible.

e If it is known that the nonlinear distortions domi-
nate: P =1, and M as large as possible (the disturb-
ing noise level will not be estimated in this case).

CHARACTERIZING NONLINEAR DISTORTIONS:
EXPERIMENTAL ILLUSTRATIONS

In this section, a series of experimental illustrations are
presented. The first example is the forced Duffing oscilla-
tor that was already used in the motivating example. The
second and third examples are industrial applications (air
path characterization of a diesel engine, and a ground
vibration test of an F-16 fighter).

Characterization of a Forced Duffing Oscillator

The nonlinear analysis method is experimentally illustrated
on the electronic circuit (see Figure 1) [3], [21], [37]. Although
this is a nonlinear feedback system, it behaves as a fading-
memory system [27] for sufficiently small input amplitudes,
and hence the proposed method can be applied.

The following settings were used to make the measure-
ments: sample frequency is about 1220 Hz, the period
length is 4096 samples, the frequency resolution is
fo=030Hz, and the maximum excited frequency is
200 Hz. Only the odd frequencies are excited, and in each
block of five consecutive odd frequencies, the amplitude of
one randomly selected frequency is put to zero so that it
can be used as a nonlinear detection line. All the excited
frequencies have the same amplitude. For each realization,
three periods of the output were measured. The first period
is dropped to avoid initial transient effects.

In Figure 13, the evolution of the nonlinear distortions
as a function of the frequency is shown for different excita-
tion levels. These distortion levels can be compared to the
output at the excited frequencies to obtain an idea about the
relative distortion levels and the SNR. It can be seen that,
for a low excitation level, the presence of odd nonlinear dis-
tortions is detected around the resonance frequency. When
the excitation level grows, the odd nonlinear distortions
grow faster than the even ones, while the observed disturb-
ing noise level remains almost the same. This figure is very
informative for the designer. For small excitation levels
[Figure 13(a)], the nonlinear distortions are 30 dB below the
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linear contributions. In that case, a linear model can be
used if a moderate precision is sufficient. For higher excita-
tion levels [Figure 13(d)], it is clear that the nonlinear distor-
tions can no longer be neglected since the nonlinear
distortions are as large as the linear contributions. In that
case, a full nonlinear model will be needed. All this infor-
mation is directly available from a simple nonparametric
nonlinear analysis that requests no user interaction. It can
be easily implemented in a measurement instrument. The
figure also shows the level of the disturbing noise. This
level remains constant in the first three experiments but
grows significantly in the last one. This might be due to a
nonlinear mixing of the process noise and the signals in the
loop, leading to signal-dependant noise levels.

Characterization of the Air Path of a Diesel Engine

The results and figures in this section are taken from [38].
The goal of the thesis was the design of a control system for
heavy-duty diesel engines that is capable of combining a
low fuel consumption with low emissions of nitrogen
oxides (NO,) and particulate matter (PM) [39], [40]. In addi-
tion, these properties should be maintained when distur-
bances are present. The control design for the diesel engine
air path is considered. A feature of the control system to be
designed was that the required design effort is low. Air-
path control is particularly interesting. It is challenging
and time consuming to calibrate using current control
methods. Moreover, the air path contains a variety of sen-
sors and actuators, which means that within the current
hardware constraints, several control layouts are possible.
The main actuators in the air path are the variable geome-
try turbine (VGT) and exhaust gas recirculation (EGR)
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valve (see Figure 14). The VGT and EGR valve are used as
inputs. The NO, emissions, air-fuel equivalence ratio 2,
and pressure difference AP between the intake and exhaust
manifold are the considered outputs. The nonlinear engine
behavior is reduced to a series of linear submodels, where
each submodel describes the engine behavior in a part of
the speed-load operating range. Since the controllers are
designed using the local linear properties, they do not
make full use of the actual nonlinear system description. A
nonlinear distortion analysis provides the necessary infor-
mation to verify the validity of this approach.

The FRF and the nonlinear distortion levels of the diesel
engine are measured at the operating point 1455 r/min and
120 mg/injection. To separate both transfer functions
(respectively, from the VGT and the EGR inputs), two zip-
pered multisines are created [7], [11] so that nonoverlap-
ping frequency grids are used for both inputs. This allows
the two FRFs to be measured in a single experiment. The
inputs were normalized on the maximum of the corre-
sponding actuator position, and the amplitudes were set to
0.7%. The results are given in Figure 15 showing the NO,
emissions in (a), the engine-out air-fuel equivalence ratio in
(b), and the pressure difference between intake and exhaust
manifold ys, in (c). The nonlinear distortions were scaled
with the normalized input levels so that they can be plotted
in the FRF figures [38]. From Figure 15, it can be concluded
that the nonlinear distortions are well above the disturbing
noise level. The level of the nonlinearities is about a factor
ten below the linear contributions for the actual settings.
There is no clear dominance of the even or odd nonlineari-
ties in the first two figures, however for the Ap signal, the
even nonlinearities dominate. On the basis of these results,
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FIGURE 13 A nonparametric analysis of the nonlinear distortions on a forced Duffing oscillator. The system is excited at a well-selected set
of frequencies as explained in the section. “Design of a multisine for nonlinear detection and frequency response function measurements.”
The nonlinearities become visible at the unexcited frequencies. Black dots: output at the excited frequencies, red bullets: odd nonlinearities,
blue stars: even nonlinearities, and green line: disturbing noise level. The excitation level is growing from (a) to (d). Observe that the level
of the nonlinear distortions grows with the excitation level, while the disturbing noise level remains almost constant.
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FIGURE 14 A schematic of the air path of a turbocharged diesel engine. A nonparametric measurement of the frequency response func-
tion and the nonlinear distortions analysis is conducted around a fixed operating point [38]-[40].
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FIGURE 15 The measurement of the frequency response function
and the nonlinear distortion levels of the diesel engine for the oper-
ating point 1455 r/min and 120 mg/injection [38]—-[40]. The figures
show, respectively, the (a) NO, emissions, the (b) engine-out air-
fuel equivalence ratio A, and the (c) pressure difference between
intake and exhaust manifold Ap. The black and grey lines show
the frequency response function from the variable geometry tur-
bine and the exhaust gas recirculation, respectively. The blue, red,
and green dots show, respectively, the odd and even nonlineari-
ties, and the disturbing noise level. From these figures, it can be
concluded that the nonlinear distortions are well above the disturb-
ing noise level. It can be seen that the nonlinear distortions are
about a factor 10 below the linear contributions for the actual set-
tings. The Ap signal is dominated by the even nonlinearities.
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the control engineer can decide that a linear control design
can still be used, keeping in mind that model errors up to
10% are present. The nonlinear distortion levels are useful
to set uncertainty bounds on the FRF that can be used in
robust control design.

Ground Vibration Test on an Air Fighter

Ground vibration testing (GVT) is an essential step in the
development of a new aircraft. Also, after each structural
modification, new GVT should be done. From these tests,
the dynamical characteristics of the air plane are obtained.
These are necessary to update the finite element models
that are used, for example, during a flutter analysis. These
tests should be conducted in a very short time period
because the test is made in the critical path of the
development program. An introduction to the state of the
art of GVT can be found in [41], which states that the major
goal of GVT is to measure the eigenfrequencies, the mode
shapes, the generalized mass and damping matrices, and
FRFs. Also, the structural nonlinear behavior must be stud-
ied. Measurement and excitation strategies are developed
to minimize the required total measurement time (for
example, nine days to test the Airbus A350XWB). The exci-
tation signals should meet level constraints and also the
hardware limitations should be respected. At the same
time, good SNRs should be obtained.

The measurement strategy that was presented earlier in
this article allows the user to meet all these customer
requirements, and go even beyond these expectations. This
is illustrated on GVT of a General Dynamics (now Lock-
heed Martin) F-16 Fighting Falcon 16. During the measure-
ment campaign, shakers were put at the right and left wing
tip, and the accelerations are measured at 140 places. The
results shown here focus on the wing-to-payload mounting
interfaces. For large-amplitude vibrations, friction and
gaps may be triggered in these connections and markedly
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impact the dynamic behavior of the complete structure.
The right wing shaker is used, and the accelerations at a
point close to the mounting interface are analyzed.

The data were measured with a sample frequency f, =
200 Hz. A multisine with a period length of about 41 s (f, =
0.0244 Hz) is used. Only the odd frequencies between 1 Hz
and 60 Hz are excited, and in each group of four odd fre-
quencies one line is not excited. It is used as a detection line
for the odd nonlinear distortions. The results for the fre-
quency band between 3 and 11 Hz are shown in Figure 16
for the intermediate excitation level. These measurements
show that the nonlinear distortion levels are far above the
noise level. So, the uncertainty on the linear measurements
(such as FRF and damping estimates) are completely domi-
nated by the nonlinear behavior, and hence they should be
used with care. The resonance around 7 Hz corresponds to
the first mode of the wings, which also excites the wing-to-
payload mounting interface at the tip of the wing. The non-
linear distortions are largest around this resonance and are
dominated by an odd linear behavior. Later on in this arti-
cle, it will be explained that this will result in an excitation-
dependent resonance frequency and damping. Both will
shift by a changing excitation level.

Observe that the disturbing noise levels are at —40 to
-60 dB, which is very good for mechanical measurements.
This illustrates that the proposed measurement strategy
meets all the formulated expectations for good GVT. In a
single experiment, it is possible to measure the mode shapes
and the resonance frequencies, together with a full nonlinear
signature of the nonlinear behavior of the tested structure.
The measured FRFs will be discussed later (see Figure 30).

NONLINEAR DISTORTIONS CHARACTERIZATION:
ALTERNATIVE METHODS

In the first part of this article, a nonlinear distortion analy-
sis method was presented that strongly relies on the use of
random-phase multisines with a well-designed frequency
grid. Alternative approaches to detect the presence of non-
linear distortions are described in the survey article [42],
and [43], with a focus on mechanical applications. Among
others, the following methods are discussed: superposition
principle and homogeneity principle [44]; overlaid Bode
plot and Nyquist plot distortions [45]; coherence function
measurements [3], [46]; bispectral analysis [47], [48]; Hilbert
transform [49]; and correlation methods [50], [51].

This article discusses two alternative methods in more
detail: the higher-order sinusoidal input describing func-
tions (HOSIDFs) and the swept sine test. There are three
reasons for this choice:

» These methods can be considered as special cases of the
previously presented framework in which the multisine
signal is replaced by a single (swept) sine excitation.

» The HOSIDFs are an elegant and practical useful
generalization of the concepts that are presented in
this article.

Amplitude (dB)

Frequency (Hz)
(b)

FIGURE 16 A ground vibration test on the (a) General Dynamics
F16 fighter jet. The right wing is excited with a shaker, and the
accelerations are measured at 140 places. In (b), the measured
acceleration for a measurement point close to the right tip, near
the missile connections, is shown. Black: output at the excited fre-
quencies, Red: odd nonlinear distortions, Blue: even nonlinear
distortions, Green: disturbing noise level. These measurements
show that the level of the nonlinear distortions is well above the
disturbing noise level.

» The swept sine analysis provides additional non-
parametric information about the nonlinear distor-
tion in mechanical vibrating systems.

Higher-Order Sinusoidal Input Describing Functions
The HOSIDFs are a generalization of the sinusoidal input
describing function [52] and describe the gain and phase
relation of a system between the input at the fundamental
frequency fo and the output at the harmonics kfo, using a
sinusoidal input signal [53]

Gr(fo, a) = Y (kfo) /UE(fo),

where a indicates the amplitude of the excitation signal.
The method can be used under feedback conditions [54].
The HOSIDFs give a simple description of complex non-
linear behaviors of mechanical systems, for example, the
transition from stick to sliding in precision mechatronic
systems [55].

An electromechanical shaker drives a sledge that is prone
to dry friction mainly created by the dry friction finger,
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FIGURE 17 An experimental setup to analyze stick/sliding in a
linear bearing with friction [54].

resulting in a stick/slip behavior (see Figure 17) [53]-[55].
The driving current of the shaker is used as an input, and the
measured acceleration is the output of the system.

The amplitudes of the first- and third-order HOSIDFs
are shown in Figure 18. As long as the system is in the
stick phase, it behaves as a linear system with a large
stiffness. Once the sledge starts to move, nonlinear dis-
tortions become visible in the measured acceleration,
resulting in a large increase of the third-order HOSIDFs.
This makes it possible to detect very clearly the transition
from stick to slip for varying excitation conditions (fre-
quency and amplitude of the sine excitation). These
results show that the HOSIDFs are a versatile tool provid-
ing intuitive insight in the behavior of a nonlinear system
that is directly accessible for the design engineer. It com-
plements the multifrequency tests that were explained
before in the section “Detection, Separation, and Charac-
terization of the Nonlinear Distortions and the Disturb-
ing Noise.”
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FIGURE 18 The magnitude and phase of the (a) first-order and (b)
third-order HOSIDFs (higher-order sinusoidal input describing func-
tions) for the system shown in Figure 17 [53]-[55].

Swept Sine Test

The swept sine test works well for mechanical systems with
isolated resonance modes and the sensors positioned close to
the nonlinear component. The system is excited with a swept
sine (this is a sine with constant amplitude, and the frequency
varies linearly with time), and the presence of nonlinear dis-
tortions is looked for either by [56]: 1) searching for anomalies
in the envelope of the response, 2) by plotting the accelera-
tion against the relative displacement or relative velocity, or
3) by making a time-frequency analysis using short-time
Fourier transforms or a wavelet analysis. From these mea-
surements, it is also possible to make a first estimate of the
function describing the local nonlinear component.

The sweep rate should be kept sufficiently low such that
the structure gets enough time to built up the full reso-
nance power when passing through a resonance. If only the
acceleration signal is used in the analysis, sharp resonances
might be missed or strongly underestimated [57]. As a rule
of thumb, the maximum sweep rate is proportional to w3s.
This problem disappears when the FRF is estimated from
the input-output measurements [58], although even in this
case the sweep rate should remain low enough to have a
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good frequency resolution. As mentioned before, the fre-
quency resolution is the inverse of the measurement time.
An increasing sweep rate decreases the measurement time
required to cover a given frequency band, and so the fre-
quency resolution drops. In some standards, for example,
the standard for space engineering testing [59], the users
are advised to use a logarithmic sweep rate between 2-4
octaves/min, independent of the structure. It is clear that
such a setting can become critical if the damping is too low.

These ideas are illustrated on the fighter measurements in
Figure 19. A swept sine excitation, sweeping from 2 Hz to
15 Hz with a constant sweep rate of 0.05 Hz/s, is applied to the
wing. Figure 19(a) shows the measured acceleration of the
wing tip against the instantaneously swept sine frequency.
The resonances that were already visible in Figure 19 and also
in Figure 30 (which will be discussed later) show up also in
Figure 19. In the plot, the crossing of the instantaneous fre-
quency through the resonance at 7 Hz is highlighted in blue.
Observe that this blue section is asymmetric, which is a strong
indicator of the presence of a nonlinear resonance. This part of
the signal is further analyzed in Figure 16(b), plotting the
measured acceleration versus the relative displacement of two
sensors put on the left and right side of the bolted connection.
It is shown in [56] that such a plot gives a good indication of
the shape of the local stiffness. A detailed description and
illustration on an aerospace structure is given in [56]. The key
idea is to discard all the inertia and force contributions that
are not directly related to the nonlinear component, as they
are generally unknown or not measured. In Figure 19(b) a
softening spring behavior is observed (the acceleration is pro-
portional to the force). This will be later confirmed by the FRF
measurements shown in Figure 30.

In Figure 20, a time-frequency analysis is made of the accel-
eration signal and plotted as a function of the instantaneous
frequency (which replaces the time axis). The decreasing red
line corresponds with the instantaneous swept sine frequency
applied to the fighter. Some harmonic frequencies are visible at
the integer multiples of this frequency. Also observe that,
around the resonance frequency, the intensity and number of
higher harmonics grows very fast. This points again to the
presence of a strong nonlinear behavior in the resonances.

This analysis complements well the multisine method
that was explained before. It is applicable whenever local
nonlinearities are present, and it is possible to put sensors
on both sides of the nonlinear structure.

SYSTEM IDENTIFICATION IN THE PRESENCE
OF NONLINEAR DISTORTIONS: SELECTION OF
A LINEAR OR NONLINEAR MODELING APPROACH?
Using the nonparametric test procedure described in ear-
lier sections, the user gets a clear view of the presence and
behavior of the nonlinear distortions. The procedure is for-
malized in a set of user guidelines.

» Design a random-phase multisine to detect the pres-

ence of nonlinear distortions following the guidelines

Acceleration (m/s?)

15 10 5]
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(a)
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o
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FIGURE 19 A ground vibration test on the General Dynamics F16
fighter (see Figure 16) using a swept sine excitation. The accelera-
tions on both sides of the bolted missile connection to the wing tip
are measured. In (a), the measured acceleration is shown. In (b),
the acceleration is plotted with respect to the relative displace-
ment between the two sensors.
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FIGURE 20 A time-frequency analysis of the measured accelera-
tion signal at the tip of the wing [56].

of the multisine design section. To do so, the even fre-
quencies and a set of randomly selected odd frequen-
cies should be put to zero. The bandwidth, power
spectrum, and peak amplitude should be similar to
the signals that will be later on applied to the model.
See [28] for a detailed discussion.
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FIGURE 21 An illustration of the impact of the approximation crite-
rion on the approximation errors. A static nonlinear system (blue
line) is approximated using two different approaches. That is, the
comparison is between a Taylor series of order 1, 3, 5,7 ,9, 11 and a
polynomial model of order 1, 3, 5, 7, 9, 11. The polynomial is fit using
least squares. The errors are shown in the bottom figures. Observe
that the Taylor series approximation gives a much better fit around
the origin, but fails to converge for an input lul > 1. The convergence
of the least-squares fit on the right side is much slower, but the
approximation converges everywhere on the interval [-3, 3].

» Make a series of (steady-state) measurements with vary-
ing amplitudes or offsets of the excitation signal that
cover the amplitude range of interest, and make the non-
linear analysis. More advanced signal processing meth-
ods can be used to remove transient effects [35], [36], [60].

» If the nonlinear distortions are smaller than the spec-
ified level of accuracy of the model to be built, a linear
design might be sufficient. This will lead to the BLA
of the nonlinear system. Otherwise, a more involved
nonlinear model will be needed. The BLA will be
studied in detail later in this article.

» Be aware that the BLA varies in general as a function
of the power spectrum and amplitude distribution of
the excitation signal. For that reason, the excitation
signals during the experiments should match as well
as possible the signals that will be applied later on to
the model as explained in the first bullet above.

Detailed step-by-step instructions for a nonparamet-

ric nonlinear distortion analysis are given in [4, Sec.

6.1], including a set of routines to prepare the experi-

ments and process the data.

P

v

APPROXIMATION OF NONLINEAR

SYSTEMS: USER CHOICES

Once a nonparametric nonlinear distortion analysis is
made, the user has to decide, on the basis of this informa-
tion, if a linear model will be sufficient to meet the modeling
goals or if it is instead necessary to use a nonlinear model.
To make this choice, it is important to understand the
behavior of the linear-modeling framework in the presence
of nonlinear distortions. Some of the theoretical properties
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that are obtained under the linear assumptions will no
longer hold. For instance, when a linear model is estimated
from a nonlinear system, the asymptotic properties of the
linear model need to be verified. Likewise, the physical
interpretation of the noise model should be modified. For
a formal mathematical framework, see “A Mathematical
Framework for Nonlinear Systems.” Within this framework,
it is possible to give a precise definition and interpretation
of the BLA that will be identified under these settings.

Describing a system with a model that is too simple
results in model errors. These model errors depend upon
some choices that are implicitly or explicitly made by the
user. To address these issues and to understand the results,
it is necessary to line up the user choices that are present in
each identification strategy. It is dangerous if the user is not
aware of these choices or if their impact is not well under-
stood. The impact of the selected approximation criterion,
the related convergence criterion, and the chosen excitation
signal are discussed below.

Approximation Methods

The quality of the fit of a model to a system, or to the data
that describe this system, can be expressed by defining a
distance between the model and the data. This distance is
called the approximation criterion or the cost function. The
sum of the absolute or the squared errors are two popular
choices. A first possibility to find an “optimal” approximat
ing model is to minimize the selected cost function with
respect to the model parameters for the given data set. If
the model can exactly describe a system and the data are
free of measurement error, the choice of the approximation
criterion is not so critical as long as it becomes zero with
exact model parameters. The choice of the cost function
that minimizes the impact of disturbing noise (the com-
bined effect of measurement noise and process noise), still
assuming that the system is in the model set, is the topic of
system identification theory. This section is focused on the
alternative situation where the data is exact but the model
is too simple to give an exact description of the system. This
mismatch results in model errors, and the choice of the
approximation criterion will significantly impact on the
behavior of the resulting model errors. The ideas are pre-
sented by analyzing a simple example. In the right side of
Figure 21, the atan function is approximated by a polyno-
mial atan(x) =~ ZZ: 0 axx*. The polynomial coefficients a
are obtained as the minimizers of the squared differences
en(x) = atan(x) — 2" axx’,

a=argmin ), e.(x)?, 5)
xeD
where the sum over x stands for the sum over all data
points in the data set D.
Alternative approaches to obtain an approximating
polynomial representation exist, for example, using a Taylor
series approximation. In that case, no explicit cost function
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A Mathematical Framework for Nonlinear Systems

The following provides some basic results of the Volterra the-
ory [18], without proof, to provide the reader with an intuitive
insight into the behavior of nonlinear systems. The emphasis is
on showing how a nonlinear system is shifting the input power
from one frequency to the other. Three intermediate steps will
be made:
e from a one-dimensional impulse response (linear theory) to
a multidimensional impulse response (nonlinear system)
* multidimensional frequency description of nonlinear systems:
a tool for intuitive insight in nonlinear behavior [26], [S1]
e return to the physical world: collapsing the multidimen-
sional frequency description to a single dimension.

USING VOLTERRA KERNELS AS

MULTIDIMENSIONAL IMPULSE RESPONSES

A linear system is characterized by its impulse response g(t),
and the input—output relation is given by the convolution integral

y = [ g@ut-7)dr

In the Volterra approach, the output of the nonlinear system is
given by the sum of the contributions of increasing nonlinear
degree o

- Z yE (O, (S1)

with y"(t):];m...fowga(ﬂ,...,n)u(t—ﬂ)...u(t—n)d‘n...
dt«. The kernel g«(71,...,70) is the multidimensional impulse
response of degree a.

MULTIDIMENSIONAL FREQUENCY

RESPONSE FUNCTIONS

The signal y“(t) in (S1) can be generalized to a multidimen-
sional time signal

ye(ts,... ¢
—f f 9a(T1, ..., Te)U(t1 —T1)...U(te — To)dT1...dTq.

The original signal is retrieved by putting t1 = ... = t, = t. The mul-
tidimensional representation in the frequency domain becomes

Y (@1,...,00) = G* (@1, ...,0a) U(@1) ..U (®0), (S2)
with G%(@1, ...,w.) the multidimensional Fourier transform of
9«(T1,...,T4). This multidimensional representation in the fre-
quency domain is very similar to the result for the linear case.

interpretation is made. The polynomial coefficients are cal-
culated from the values of the function’s derivatives at a
single point, in this case x = 0. In the left side of Figure 21,
the successive Taylor approximations are shown for grow-
ing orders n.

Both approximations are different from each other, and
the model errors have a completely different behavior.

The output spectrum is obtained as the (multidimensional)
product of the transfer function with the input.

FROM A MULTIDIMENSIONAL TO

A ONE-DIMENSIONAL FREQUENCY VARIABLE

The one-dimensional spectrum Y% (w) is retrieved by
looking for all frequency combinations ws,...,@e Such
that @i+ -+ wa= @. These are retrieved by Y%(w)=
f f Y (@1,...,00-1,0 — @1+ - + Da—1)d®1 ...dwe—1. Ob-
serve that this is a generalization of the response of a nonlin-
ear system to a sinusoid.

MEASURING THE VOLTERRA KERNELS

Although the Volterra representation is an attractive nonparametric
description of a general class of nonlinear systems, there are only
a few methods described in the literature to measure the Volterra
kernels, with most of them focusing on systems with short mem-
ories. The major reason for this lack of interest is the exploding
number of parameters to be identified due to the multidimensional
nature of the kernels. A first possibility is to use higher-order corre-
lation methods [18], often combined with an orthogonal represen-
tation of the Volterra series, for example, using a Wiener represen-
tation. Methods were presented to avoid the long correlation times
that are needed by the use of well-designed excitation signals
[S4]. The basic idea is to generate a multisine where the active
frequencies are selected such that the harmonic interference of
the kernels of different degree is eliminated up to a given degree
(for example, degree four). The design of such “no interharmonic
distortion” signals (NID-signals) is discussed in detail in [S2] and
[S3]. Methods to measure the multivariate FRF that make use of
such signals are discussed, for example, in [S4] and [S5].
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While the Taylor approximation converges very fast around
zero, it fails to converge outside the interval [-1, 1]. The
least-squares approximation converges over the full inter-
val [-3, 3] but at a slower rate. The width of the interval can
be made arbitrarily large.

In this article, the least-squares model fitting approach
is followed.
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Since the cost of a nonlinear approach is significantly higher, additional
information is needed to guarantee that there will be sufficient return on the
additional needed investments of time, money, and human resources

Convergence Criteria

In the previous example, a polynomial approximation of
the atan(x) function is made. Using the least-squares cost
function, the error can made arbitrarily small in a given
interval by increasing the complexity of the model. In
Figure 22, a discontinuous function is approximated using
polynomials of different degrees. Again, it can be seen that
the error can be made arbitrarily small for all inputs, except
at the discontinuity at u = 0 where the error converges to
half the discontinuity. This prohibits uniform convergence
that is characterized by a decrease of the maximum error in
the interval. More formally, for all ¢, there exists a value N
such that supxep|eq(x)| < & forn > N.

To include also discontinuous functions in the frame-
work, the convergence criterion should be weakened to
point-wise convergence, which can be obtained by using
the convergence in the mean-square sense. Mean-square
convergence requires that

%LI‘I}OXED en(x)?2=0,
which guarantees that the approximation converges every-
where excepted for some isolated points where the function
is discontinuous. For continuous functions, uniform con-
vergence is retrieved. It is clear that this concept matches
very well with the least-squares model-fitting approach. In
this article, mean-square convergence will be used.

Impact of the Choice of the Excitation Signal
The actual fit of the model, in the absence of model errors
and noise-free data, will not depend on the characteristics

2
0
-2 .
-2 0 2
u

FIGURE 22 The least-squares approximation of a discontinuous
function with continuous basis functions.
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of the excitation signal. This changes drastically when the
model is not rich enough to capture the full system behav-
ior. In that case, errors will be present, and during the fit
these will be pushed to those parts of the input domain that
are not so well excited because that reduces the cost in (5).
This makes the results dependent on the choice of the exci-
tation, which is illustrated in Figure 23 where atan(u) is lin-
early approximated using the model y = au. Figure 23 shows
that the BLA depends on the amplitude distribution of the
excitation signal. In Figure 23, the results for a Gaussian,
uniform, and sine excitation [see Figure 23(c)] are shown in
(c), and the histogram for each of the excitation signals is
shown (b). Since most of the probability mass of a Gaussian
distribution is around the origin (see the Gaussian histo-
gram), the Gaussian excitation results in the best fit in that
subdomain. A sine excites mostly the extreme values (see
the histogram of the sine excitation), and it results in a fit
that better approximates the nonlinear function for these
extreme values. This comes at a cost of larger approxima-
tion errors around the origin. The behavior of the uniform
distribution is in between these two extreme distributions,
and this is also true for the corresponding fit (blue line).

This example shows that the experiment design in the
presence of model errors will be even more important than
in classical system identification where no model errors are
considered. If the user is aware that model errors will be
present, care should be taken that at least a part of the
experiment consists of signals that mimic very well the sig-
nals that will be applied later on to the model. The remain-
ing part of the experiment can be used to obtain a sufficiently
rich excitation so that the uncertainty remains small enough.
Such an approach is illustrated on the identification of an
industrial clutch in [61]. To identify the BLA for a nonlinear
dynamic system, not only is the power spectrum of the exci-
tation important (to cover the frequency band of interest),
but also the amplitude distribution plays a crucial role (to
excite those amplitude regions that will be used in later
applications). In [61], a mixture of random-phase multisines
and impulsive excitations is used to cover the later use of
the model.

A NEW PARADIGM: REPLACING THE

NONLINEAR SYSTEM BY A LINEAR SYSTEM

PLUS A NOISE SOURCE

In the previous section, the impact of some user choices (app-
roximation method, convergence criteria, and excitation signal)
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on the behavior of model errors is discussed. In this sec-
tion, these results are used to approximate a nonlinear
system with a linear model. First, the user choices are
specified. Next, the BLA will be introduced, and the prop-
erties of the model errors are discussed. This leads eventu-
ally to a new paradigm to deal with nonlinear systems in a
linear setting.

User Choices

Since the approximation of a nonlinear system by a linear
model creates model errors, the user choices that were dis-
cussed before should be carefully made. As explained
before, the linear approximation is tuned by minimizing the
mean-square error between the measured and modeled
output. As a direct result, the output error will be uncorre-
lated with input. The excitation will be restricted to random
signals with a Gaussian distribution. These include filtered
Gaussian noise and random-phase multisines (2) with a suffi-
ciently large number of components (in practice F > 10 works
in many applications).

400

The Best Linear Approximation Gg

The linear system that fits best the data is called the BLA,
represented either by its impulse response Gpra (t), or its FRF,
G (w). More formally, GeLa is defined as [3], [28], [62]-[65]

Goia(q) = argmin E{|yo(t)— G(q)u(t)[}, ©

where g is the shift operator for a discrete-time model. Sim-
ilar expressions can be given for continuous-time models.
All expected values E{} in this article are taken with respect
to the random input u(t). In most applications, the dc value
of the input and output signal should be removed to obtain
a model that is valid around a given setpoint. A more
detailed analysis is given in “The Best Linear Approxima-
tion of a Volterra System.”

A Nonlinear Noise: Source

The difference between the output of the nonlinear system
and that of the BLA ys(t) = y(t) — Gsra(g) u(t) is called the sto-
chastic nonlinear contribution or nonlinear noise. Although

200
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FIGURE 23 The best linear approximation (BLA) of a static nonlinear system (the black line in the right figure) depends on the amplitude
distribution of the excitation signal. The BLA for a Gaussian (red), uniform (blue), and sine (green) excitation [in (a)] are shown. The
histogram (for 1024 samples) for each of the excitation signals is shown in (b). Since most of the probability mass of a Gaussian distribu-
tion is around the origin (see the Gaussian histogram), the Gaussian excitation results in the best fit in that domain. A sine excites mostly
the extreme values (see the histogram of the sine excitation), and it results in a fit that better approximates the nonlinear function for
these extreme values. This comes at a cost of larger approximation errors around the origin. The behavior of the uniform distribution is
in between these two extreme distributions, and this is also true for the corresponding fit (the blue line).
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The Best Linear Approximation of a Volterra System

In this sidebar, an explicit expression is given for the best linear
approximation (BLA) for a Volterra kernel of degree a. The
multidimensional output is given in (S2). For a multisine excita-
tion, the contributions at a given frequency k are retrieved by
looking for all frequency combinations such that 27:1’0’:",
with k; an excited frequency; see also (1). These multivariate
output contributions are given by

Y (k1,Ka, ....ka) = G%(K1,kz, ..., ka) U (k1) U (k2) ..U (Kd), (S3)
for a kernel of degree a. Among these, only the contributions
for which

Uk1)U(k2)...U(ka)U(— k) = U(k1)U(k2)...U (ko) U(k), (S4)
(where the overbar denotes the complex conjugate) do not de-
pend on the input phases ZU will contribute to the BLA. If this
product would still depend on the random phases of the input, its
expected value over multiple realizations would be zero because,
by definition, for a random-phase multisine E{e/’} =0 and the
phases of a random-phase multisine are independent over the
frequency. So it should be possible to write (S4) as a real number,
which can only be done if all the components U in this product can
be combined in pairs of complex-conjugated inputs, for example
U (ki) U(~ ki) = | U (ki) ]2, such that the input phases are cancelled.

From this result, it can be seen that only kernels with an odd
degree o can contribute. For the odd kernels, the contribution
of degree a =28+ 1to Yg a(k) is

Yoia(k) =2 ... D" Chokro—krv.ookpo—ks

k1 kp

“Galk, k1, — k1, ....kp, —kp) | U (k1) 1%... 1 U (kp) 12U (K),
where the sum runs over all frequencies that are excited. The
constant Cx ki, —ks,...ks,—ks @Ccounts for the number of all possible
frequency combinations that are obtained by changing the po-

sition of the frequencies in Ga(k, k1, — K1, ...,kp, —Kkp).
Nonlinear System
U—> !0
—f >
l Vs
YBLA Y
u ()
T GgLa

A new paradigm: the nonlinear system (the top figure)
is replaced by the best linear approximation Gg_, plus an error
term ys(t) (the bottom figure).
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A Wiener—Hammerstein system. A static nonlinear
system f is sandwiched between the linear dynamic systems R, S.

EXAMPLE: A WIENER-HAMMERSTEIN SYSTEM

Consider the Wiener—Hammerstein system in Figure S1 ex-
cited by a random-phase multisine with F excited frequen-
cies. For a static nonlinearity f = x°, the multivariate output
(S3) becomes

Y (k1,ka,ka) = G*(k1,kz,k3) U (k1) U (k2) U (k3).

For the Wiener—-Hammerstein system, this reduces further to

Y (ki kz,ka) = S (k1 + ka + ka) R (k1) R (k2) R (ka)
Uk U(k2) U(ks).

The contributions Yg A(k) are then given by looking for all
combinations k = k1 + k2 + ks that depend only on the phase
of U(k)

Yaa(k) = U (k) x 68(k)R(k)ZF: IS 121Uy 12— Ey,
=1

with Ey=3S(k)R (k)1 S(k)121U(k)12U(k) a correction term
because for | = k, only three permutations are possible instead
of six [S6].

The stochastic nonlinear contributions Ys(k) are given by
all other terms where condition (S4) does not hold, for exam-
ple, the contribution S(k)R(k—1)R(—k—-2)R(k+3)U(k—1)
U(-k—2)U(k +3).

REFERENCE
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this name might be misleading (the error is deterministic for
a given input signal), it is still preferred to call it a stochastic
contribution because it looks very similar to a noise distur-
bance for a random excitation [3], [4], [66], [67].

A New Paradigm

By combining these results, the output of a nonlinear
system that is driven by a random excitation (or a Riemann-
equivalent signal [28]) is split in two classes of contribu-
tions, being the coherent contributions Yy, and the
noncoherent contributions Y5 (see Figure 24). The linear
part of the system contributes to the coherent output only,
while the nonlinear distortions contribute to both the
coherent and noncoherent output.
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» Coherent output: The relation between the input Uj(k)
and the coherent (non)linear contributions Yy 4(k) is

Yara (k) = Gera (k) U (k) + T (k),

where T(k) models the transient effects and leakage
errors [3], [68]. From now on it is assumed, without
loss of generality, that steady-state conditions apply,
such that the transient terms can be neglected in
what follows. The transfer function Gsra (k) depends
on the power spectrum of the Gaussian random exci-
tation. Changing the Gaussian distribution to an
alternative such as a uniform distribution can change
the BLA. From a spectral point of view, the phase of
Ypra(k) is equal to the phase of the input plus the
phase of the transfer function Gera (k). Since Gpra is
an expected value over the random input, its actual
value will not depend upon the actual realization of
the random input.

» Noncoherent output: The noncoherent output ys
accounts for the difference between the output of the
BLA and the actual nonlinear output. For random
excitations, it is very difficult for an untrained user to
distinguish the nonlinear noise ys(t) from the addi-
tive disturbing output noise v(t) (Figure 24). The
nonlinear noise ys(t) is uncorrelated with u(t)
because they are the residuals of the solution of a
least-squares problem. However, u(f) and ys(t) are
mutually dependent since there exists a nonlinear
relation between both signals, namely

ys(t)=yo(t) — Gora(q)u(t).

Combining both results, the noise-free output yo(t) can be
written as the sum ysra () + ys(t) (see Figure 24) [3], [66], [67]

y(&) =yo(t) +o(f),
yo(t) = Gera(q)u(t)+ys(t). (7)

In the frequency domain the relation between the FFT
spectra becomes

Y(k)= Yo(k)+ V(k)
= Gera (k)U(k)+ Ys(k)+ V(k), )]

disregarding again the transients T (k) representing the ini-
tial transients and leakage errors. The phase of Y(k) will
depend upon the phase of the input U(l), for some values
[ # k. This was not so for Yy 4(k), whose phase depends
only on the input phase ZU(k). Since the phases are sto-
chastic variables, Y¢(k) will also be a stochastic value with
respect to the random input.

The power spectra of Y5 and V can be measured using
the nonparametric nonlinear detection methods that were
explained before. In [69] a rationale is given that shows that

the level of the stochastic nonlinearities (noncoherent
output) is also a good indicator for the level of the nonlin-
ear coherent output for the considered class of excitations
(random-phase multisines and Gaussian noise).

For the specified user choices (mean-square error
and random Gaussian excitation), the asymptotic prop-
erties of GpLa and Y are well known, assuming that the
number of frequencies N in the multisine (2) grows to
infinity. A detailed discussion is given in [3, Sec. 3.4];
here only a brief summary of the most important prop-
erties is given.

The BLA GgLa is shown to be smooth; it does not
depend on N, and it is the same for all Riemann-equiva-
lent excitations. Only the odd nonlinearities contribute
to Gara-

The stochastic nonlinearities Y have a smooth power
spectrum. They are zero-mean circular complex normally
distributed, and they have the same power spectrum for all
Riemann-equivalent excitations. Both the even and the odd
nonlinearities contribute to Y.

A Toy Example

Consider a static nonlinear system
N k
y= z axu”.
k=1

For (filtered) Gaussian noise excitations, it is known
from Bussgang’s theorem [65], that the BLA is also static
ysLa = apLau. The least-squares estimate is

apLa = 7Zy(t)u(t)
2u()?’
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FIGURE 25 An illustration of the dependency of the best linear
approximation (BLA) of a static nonlinear system on the distribu-
tion of the excitation signal. Results are shown for a (filtered) uni-
form and a (filtered) Gaussian excitation on a normalized frequency
axis, with f the frequency, and f; the sample frequency. The ampli-
tude and phase of the estimated Gsa are shown for the following
noise filters: blue: white noise and black: u(t) =e(t) +0.5e(t—1),
red: u(t) =0.5e(t) +e(t—1).
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which converges for large data sets to

n
ABLA = Z Ak Uk+1 /,Uz,
k=1

with u. the moment of order a. This simple example
shows that the BLA depends on the higher-order moments
of the excitation. Observe that this result depends only on
the amplitude of the Gaussian noise (all higher-order
moments of a zero-mean Gaussian distribution are set by
its variance), and not on its power spectrum. For zero-
mean excitations, only the odd degrees will contribute to
the estimate.

This result changes when the excitation is no longer
Gaussian distributed. A nice illustration is given in [4, Ex.
83.b], taken from [62]. The BLA of a cubic static nonlinear
system y = u® is estimated for six different situations: u is
zero-mean white Gaussian or uniformly distributed noise,
u(t) =e(t)+0.5e(t—1), or u(t) =0.5e(t) +e(t—1), with e(t)
being zero-mean white Gaussian or uniformly distributed
noise. The resulting FRF of the BLA is given in Figure 25.
From the figures on the right, it is seen that for Gaussian
noise GpLa has a constant amplitude and phase that corre-
sponds to a static system. In the figures on the left, the excita-
tion is generated starting from a uniformly distributed noise
generator. For white noise, Ggra is still a constant. However,
for the filtered uniform noise, a frequency-dependent FRF
is retrieved that depends on the actual filter that is applied.
In this example, short filters were used. If the impulse
response becomes longer, the distribution of the filtered
signal will converge to a Gaussian distribution and the
dependency on the distribution of ¢ will disappear [32].
This allows well-selected pseudorandom binary excitations
to be used in many practical applications to measure Gpra
[33]. Since in some industrial applications, binary excita-
tions are the only feasible excitation (for example, opening
or closing a valve), this might become an attractive pra-
ctical extension.

NONPARAMETRIC IDENTIFICATION
OF THE BEST LINEAR APPROXIMATION
In this section, we explain how to measure the FRF of
the BLA. An optimal strategy (choice excitation signals
and reduction of the impact of the nonlinear distortions)
to obtain the best FRF measurement within a given time
is proposed. First, the error sources in the Gpa mea-
surement will be discussed, and it will be shown how
to reduce them. Next, experimental illustrations will
be shown.

It is shown [70] that all the results for nonparametric
FRF measurements, developed for the linear framework,
hold also for the nonlinear situation

Svu(k)
Suu k)’

Goia(k) =
and
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Olisturbances (K)

2
BLA k = 2 7
oG (k) Suu (k)

)

with Suu(k) and Syu(k) the sample auto and cross-power
spectrum obtained from the finite set of repeated measure-
ments. In Figure 26, it can be seen that there are three
contributions to the noise variance that show up in the
numerator of the variance expression

O%isturbances (k) — G%/L (k) + O‘%/ (k) + O-%/S (k)

O-%SBLA (k) = éuu (k)

. (10)

Suu

with o%1,0%,0%s being, respectively, the variance of the
leakage error, the disturbing noise, and the stochastic non-
linearities. In the next section, it will be shown how these
different contributions to the variance can be reduced to
minimize the variance.

Reduction of the Errors on the FRF

in the Presence of Nonlinear Distortions

Two possibilities to reduce the variance (9) on the FRF mea-
surement of Ggra are discussed. The first one is to avoid
dips in the power spectrum estimate Suu of the input.
These (very) small values of Suu(k) result in a much higher
noise sensitivity since Suu(k) is in the denominator of (9).
The second possibility is to reduce the variance O Jisturbances (K)
as much as possible. Both possibilities are discussed below.

Avoiding Dips in the Observed Input

Power Spectrum Suu

The observed power spectrum Suu(k) = (1/P)Y,_, [U" (k) F,
obtained from P realizations of the random input, can be

Nonlinear System

Disturbing
i Noise oy (k
Generator Nginslgnear v(k)
Supu(k) Source
Linear System Ovs
7l Gaalio)
FFT
Processing

Leakage oy (k)

FIGURE 26 Error sources in a frequency response function (FRF)
measurement: leakage error with standard deviation oy, disturbing
noise (process noise, measurement noise, and environmental noise)
with standard deviation v, and the nonlinear noise source (stochas-
tic nonlinear contributions) with standard deviation oys. The variance
of the FRF atfrequency f,is o0& (k) = (05 (k) + 6% (k) + 055 (K))/Suu.
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Due to the presence of a feedback loop, the nonlinear distortions
at the output of the system will also influence the input.

significantly different from the power spectrum Su,u,(k),
especially for small values of P. This can be seen in
Figure 27. For small values of P, large dips can be observed
with a loss of 20 dB or more. To reduce the loss to 1 dB
(10%) with a probability of 95%, at least P = 64 realiza-
tions should be averaged (see [3, Table 2-1 p. 58]). For that
reason, it is better to avoid random excitations if possible,
and use, for example, random-phase multisines (see
Figure 10) that do not face this problem.

Reducing the Noise Contributions
The reduction of the three noise contributions in (10) is dis-
cussed below.

» Disturbing noise o¥(k): The only possibility to reduce
the disturbing noise level is to be careful during the
measurement setup. Using shielded cables, low-noise
signal conditioners, reducing the environmental
noise, for example, can all contribute to keep the dis-
turbing noise as small as possible.

» Leakage errors oy (k): A random-phase multisine also
eliminates the leakage errors in the FFT-processing
of the results, so that oy, = 0. This is a second reason
why the use of random-phase multisines is strongly
advocated.

» Nonlinear noise source o, (k): Although nonlinear dis-
tortions are intrinsically linked with a nonlinear
system, it is still possible to partially eliminate their
impact on the FRF measurement by using an odd exci-
tation. This can be either a random noise source with a
symmetric amplitude distribution (for example, zero-
mean Gaussian noise) or a well-designed multisine.
An odd multisine does excite only the odd frequen-
cies, and the FRF is only measured at those frequen-
cies. Keep in mind that this doubles the required
measurement time for a given frequency resolution
because the even frequencies cannot be used in that
case for the FRF measurement, so that one frequency
out of two is not in use. However, this comes with the
advantage that the even nonlinear distortions are no
longer influencing the odd frequencies, as explained
in the section on nonlinear distortions detection. For
systems with dominating even nonlinearities, a large
reduction of the nonlinear noise variance on the FRF
measurement will be obtained.

Experimental lllustration of the Noise Reduction

The huge gain that can be obtained by following the above
guidelines for excitation signal design are illustrated on a
hair dryer setup. The current that is driving the heating
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FIGURE 27 The power spectrum estimate Syy of an observed
random noise sequence, averaged over P realizations.
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FIGURE 28 An illustration of the noise reduction in the frequency
response function (FRF) measurement of Gg_, on a hot-air device.
The FRF of the best linear approximation is measured using
random noise excitations, a multisine that excites all frequencies,
and two multisines that excite only the odd frequencies. The blue
lines show the measured FRF, and the red lines show the stand-
ard deviation.

element is shaped with the excitation signal around a
given setpoint using a thyristor. The firing angle was
selected such that dominating even nonlinearities show
up in the thyristor characteristic. Three different classes of
Riemann-equivalent excitation signals were designed. The
total available measurement time was the same for each of
these signals. Care was taken so that the frequency resolu-
tion of the FRF measurement was equal for all the excita-
tions (an odd multisine has only half the frequency
resolution of a full multisine that excites all the frequen-
cies). The results are shown in Figure 28. The FRF for the
three classes of excitations coincide well, as is expected for
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Riemann-equivalent signals [28]. However, the standard
deviations are very different. The random noise excitation
is the worst; this is due to the presence of dips in the input
power spectrum. By using a multisine, the dips are eli-
minated, and this results in a reduced standard deviation.
However, the best results are obtained by the odd multi-
sines because these eliminate completely the impact of the
(dominant) even nonlinear distortions and reduce the
standard deviation even more. Using an odd multisine
excitation eventually reduces the standard deviation
almost 20 dB (factor ten) with respect to the random exci-
tation. Such a reduction corresponds to a reduction in
measurement time of a factor 100.

User Guidelines

» All the nonparametric expressions of the linear
theory can be used to measure the FRF of the BLA. So
there is no need to change the measurement equip-
ment to deal with the nonlinear situation.

» Use odd random-phase multisine excitations, de-
signed following the guidelines of the section on
nonlinear detection, to measure the FRF Gpra (k) and
its variance 6¢&(k).

» Averaging over multiple realizations reduces the
impact of the disturbing noise and the stochastic
nonlinearities Y. It results in a smoother estimate.
However, it does not reduce the systematic contribu-
tions of the nonlinear distortions to the BLA. The
latter cannot be reduced using averaging techniques:
averaging smooths the result, but the nonlinear
dependency of GpLa on the input characteristics will
not be reduced.

» Use the available measurement time to maximize the
number of realizations of the random-phase multisine
by keeping the number of repeated periods P per real-
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FIGURE 29 The measured frequency response function of a reso-
nating system with a hardening spring. The resonance frequency
shifts to the right for an increasing excitation level. This is the typical
behavior for a hardening spring. The shift is due to the systematic
nonlinear contributions, which create a shift in the dynamics of the
best linear approximation. The apparent noisy behavior, induced by
the stochastic nonlinearities, grows with the excitation level.

60 IEEE CONTROL SYSTEMS MAGAZINE > JUNE 2016

ization small (for example, P = 3). This advice can be
refined, depending on the prior knowledge of the
user: 1) No prior knowledge available: select P =2,
and M as large as possible. 2) Maximize the nonlinear
detection ability: M =2, and P as large as possible. 3)
If it is known that the nonlinear distortions dominate:
P =1,and M as large as possible (the disturbing noise
level will not be estimated in this case). If even nonlin-
earities dominate: use an odd multisine, exciting only
the odd frequencies in the frequency band of interest.
If odd nonlinearities dominate: use a full multisine, excit-
ing all frequencies in the frequency band of interest.

» A generalization to the measurement of the BLA of a
MIMO system is discussed in [71].

FRF Measurement of the Best Linear

Approximation: Experimental lllustrations

The measurement of the FRF of the BLA is illustrated on a
lab scale (the forced Duffing oscillator) and on two real-life
examples: 1) a ground vibration test on a fighter jet and 2) a
MIMO measurement on an industrial robot.

The Forced Duffing Oscillator

In this example, the measurements on the forced Duffing
oscillator, which are discussed earlier, are further pro-
cessed. The FRF is measured for four different excitation
levels and shown in Figure 29. The FRF is averaged over 50
realizations of the input signal to obtain a smoother result.
Observe that the resonance frequency shifts to the right for
increasing excitation levels and that the measurements
become noisier. Both effects are completely due to the non-
linear distortions. The level of the distortions that corre-
sponds to these measurements can be seen in Figure 13.

Ground Vibration Test on a Fighter Jet

In the second example, the measurements of the ground
vibration test, which was discussed earlier, are processed.
In this example, some additional signal processing was
done to provide additional information. This leads to an
alternative method to detect and analyze the presence of
nonlinear distortions, called the robust method [3], [4],
[72]. First, for each realization, the FRF is averaged over
the successive periods. This provides not only an aver-
aged FREF, it gives also an estimate of the disturbing noise
variance o%(k) as a function of the frequency. This esti-
mate is not affected by the nonlinear distortions because
these do not vary over the periods. Next, the FRFs and
variance estimates are further averaged over the realiza-
tions, and again the variance is calculated. This results in
a reduction of the impact of the stochastic nonlinearities
on the FRF measurement, it also allows the variance of
disturbing noise plus the stochastic nonlinearities
0% (k) + 0%(k) to be estimated. This value, called the total
variance, is shown in Figure 30(a), together with the
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amplitude of the output. Since the total variance o3+ 0%
is much larger than the noise variance c%(k), it follows
that it is also an excellent measurement of the nonlinear
distortion level in this case.

This nonlinear analysis method is an alternative
approach to measure the level of the nonlinear distortions
and the noise. Its major advantage is that no detection lines
are imposed on the excitation. This not only increases the
resolution of the measurement (the even lines are also used
to measure the FRF), but it also relaxes the constraints on
the input signal because it is no longer necessary to impose
the zero lines. Nonlinear actuators are no longer a problem.
Thus, this method is also called the robust method. The
major disadvantage is that it is no longer possible to make a
distinction between the even and the odd nonlinearities.

The FRF of Gsra is shown in Figure 30(b). Again, it can
be observed that it varies with the excitation level. This
time the resonance is shifting to the left, which corresponds
to a softening stiffness and is in agreement with the fact
that, in this case, the nonlinearities are due to a bolted con-
nection between the wing tip and the missile.

Multiple-Input, Multiple-Output FRF Measurements

on an Industrial Robot

In this example, the MIMO FRF of an industrial robot with six
degrees of freedom is measured (see Figure 31) [73]. The figure
shows a selected set of the measured FRFs between three
motor torques and three motor accelerations. When designing
excitations for MIMO measurements, additional design
aspects come into the scope besides those that were already
discussed before. In a MIMO FRF measurement, a set of linear
equations with a dimension n,Xn, (1, is the number of
inputs) should be solved. The condition number of this matrix
affects very strongly the noise sensitivity. Using orthogonal
multisine excitations [36], [71], it is possible to obtain a condi-
tion number equal to one, while at the same time it is still
possible to make the nonlinear distortion analysis. In this
case, the total variance and the noise variance are shown.
Using these signals resulted in a significant improvement of
the FRF measurements. The settings for these MIMO mea-
surements are as follows. The measurements are averaged
over nine realizations of an odd random-phase multisine.
From each realization, a set of 11, = 6 orthogonal multisines is
created and is used as the input for a single MIMO experi-
ment. P =2 periods are measured in steady state for each
realization. The period length of the random-phase multisine
is 10 s, and 195 odd frequencies are excited in the frequency
band from 1 to 40 Hz. The sample frequency was fs = 2 kHz.
More information can be found in [73] and [74].

PARAMETRIC IDENTIFICATION OF

THE BEST LINEAR APPROXIMATION

In many applications, a parametric transfer function model
or state-space representation of the system is needed,
together with an estimate of the model uncertainty.

Plant Model Estimation

Starting from Gria(k) and G2%(k), it is possible to obtain
such a parametric model by minimizing the following
weighted least-squares cost function that comes from the
linear system identification theory [3], [66]

GBLA(k) - G(Q0) ‘2
65 (k) ’

V(o) = %fj | (11)
k=1

where Q) is the continuous or discrete-time frequency vari-
able. It can be shown that the minimizer G (Qx,6) of the cost
function (11) is a consistent estimator for GpLa (the estimate
converges to the exact value as the number of data points
tends to infinity) if the BLA is in the model set.
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FIGURE 30 The measured frequency response function (FRF) of
Gga Of the F16-fighter (see Figure 16) at small (grey line) and
medium (black line) excitation levels. A specific challenge encoun-
tered with fighter aircraft is the modeling of the wing-to-payload
mounting interfaces [for example, the missile on the tip of the wing
in Figure 16(a)]. For large amplitudes of vibration, friction and gaps
may be triggered in these connections, resulting in nonlinear
behavior. Part (b) shows a zoom around 7 Hz of the measure-
ments shown in (a). The levels of the total variance (red) and the
disturbing noise (green) are given. Observe that the resonance
frequency shifts to the left for an increasing excitation level. This
corresponds to a softening spring. This behavior originates from
the bolted connections mentioned before. In (a), it is shown that
the nonlinearities are largest around the resonance frequencies,
and they are well above the disturbing noise level.
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FIGURE 31 The nonparametric analysis of an industrial robot (a) with six degrees of freedom using orthogonal multisine excitations. The
multiple-input, multiple-output frequency response function (FRF) for the six degrees of freedom is measured. The FRFs between three
motor torques and three motor accelerations are shown in (b). Blue line: frequency response function, red line: level of the total variance
(nonlinear distortions + disturbing noise), and green line: level of the disturbing noise. The nonlinear distortions dominate, and the red
line is everywhere well above the green line [73], [74].

An alternative is to use the results of the prediction error 1Y )
framework [1]-[3]. In that case, a parametric model is used Vye(6) = N tzzl (H™(9,0)(y () = G(q,0)u (1)
67 (k)= A H(Q06)F, In the general problem, the plant and noise model
parameters are estimated. The reader is referred to [1] and
and the cost function is formulated directly on the input [2] to learn how to choose the plant and noise model struc-
output data leading to ture. In the motivational example, a Box-Jenkins model
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In many applications, a parametric transfer function model
or state-space representation of the system is needed, together
with an estimate of the model uncertainty.

structure was used. In that case, the plant and noise model
have no common parameters. A simplified approach would
be to put the noise model H(g, 6) = 1. Under open-loop con-
ditions, this will still lead to consistent estimates for Ggra,
provided that Gpra is in the model set. However, no infor-
mation on the distortion levels will be available, and the
uncertainty on the estimated plant model will be larger.
Under closed-loop conditions, the estimate will become
also biased.

Variance Estimate of the Plant Model
The linear system identification theory also provides a theo-
retical estimate of the variance of the estimated model, start-
ing from the assumption that the disturbing noise is
independent of the excitation signal u(f). This assumption
does not hold for y,(f). As mentioned before, the stochastic
nonlinearity is uncorrelated with the input but still depen-
dent on it. A detailed study shows that this dependency
between the input and the nonlinear distortions will lead to a
much higher variance than what is predicted by the linear
theory [75].

The worst-case situation occurs for a static nonlinear system
y = u", as was studied in the toy example of the previous sec-
tion. In that case, an analytical analysis can be made for a zero-
mean white Gaussian noise excitation. The BLA y = apLau
was given by asia = un+1/p2. The ratio between the actual
variance o7y, that will be observed by repeated experiments,
and the variance 63, ... that is obtained from the linear iden-
tification theory assuming independent noise, is

2
Oapa  _
Cima =gy 41,
O apLA ind

This shows that the underestimation of the variance by the
linear framework grows linearly with the nonlinear degree
n. This leads to far too optimistic uncertainty bounds;
underestimation of the actual variance with a factor seven
(about 8 dB) or more occurs.

In Figure 32, the underestimation effect is shown on the
identification of a Wiener-Hammerstein system. Such a
system consists of the cascade of a linear dynamic system,
a static nonlinear system, and a linear dynamic system. It
can be shown, for Gaussian excitations,

Gsra (k) = aG1(k) G2 (k),

—{t H NV =

Wiener-Hammerstein System
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FIGURE 32 Parametric identification of a Wiener—-Hammerstein
system. The theoretical ow and the actually observed osim stand-
ard deviation are shown.

with G;, G, the transfer functions of the first and second linear
system, and o a constant that depends on the nonlinear system
and the properties of the excitation signal. From Figure 32,
it can be seen that the actual observed error level in the
simulations osim is significantly larger than the expected level
ow from the linear system identification theory.

The experimental results shown in Figure 4 are similar
in that the actual variance is about 4 dB larger than what is
predicted by the linear framework.

User Guidelines

Measure the FRF Gpra (k) and its variance 6% (k) following
the guidelines for nonparametric measurements of the BLA,
and estimate the parametric model. Take care: while the
uncertainty bounds of the linear theory could be safely
used for nonparametric models, they are not valid for the
parametric model. There exists, for the time being, no
simple theory to provide better error bounds. The BLA can
also be directly estimated from the raw input-output data
in the time or frequency domain, using the classical linear
framework. A detailed step-by-step procedure explaining
how to identify a parametric estimate of the BLA is given in
[4, Chap. 7].

NONLINEAR DISTORTION ANALYSIS
UNDER CLOSED-LOOP CONDITIONS
The nonparametric nonlinear distortion analysis method
that was proposed earlier in this article has to be used
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Measuring the FRF of a Linear System Under Closed-Loop Conditions

Measuring the FRF of a system under closed-loop con-
ditions requires special precautions. Depending on
the SNR of the measurements, either the FRF of the feed-
forward branch, the inverse feedback branch, or a combina-
tion of both results. The simplest approach to measure the
FRF of a system is to measure the input and output signals
u(kTs),y (kTs),k=1,...,N, with Ts = 1/fs the sampling period,
calculate the discrete Fourier transforms U (k),Y (k) of these
signals, and divide the resulting spectra to obtain an estimate
G (k) = Y(k)/U(k) at the frequency kf,/N. The raw data need
to be averaged to reduce the noise and leakage errors. This
should be done before dividing the spectra because large
errors will occur at those frequencies where U(k) becomes
very small. For that reason, it is better to estimate first the
cross- and autospectrum Syu,Swy, and the FRF estimate at
frequency k is

A _ évu(k) _ (S5)
)

Gk = Suu(k

These methods became popular in the 1960s, especially in
combination with pseudorandom-binary excitation signals to
generate multifrequency excitations [46], [S7]. To do so, the re-
cord is split in P subrecords, and for each of these the discrete

under open-loop measurement conditions. To prevent
unstable behavior or saturation, the measurements on a
dynamic system are often made under closed-loop condi-
tions. In other situations, the interaction between the
system and the actuator creates closed-loop effects, espe-
cially when the input impedance of the system is not very
large with respect to the output impedance of the actuator.
Because this interaction is the typical situation for mechan-
ical systems, the open-loop nonlinear distortion analysis
and the concept of BLA need to be generalized to these
closed-loop measurement conditions. The impact of
closed-loop conditions on the measurement of the FRF of a
linear system is discussed in “Measuring the FRF of a
Linear System Under Closed-Loop Conditions.” Without
special precautions, the closed-loop effect will create sys-
tematic errors on the FRF measurement. Either the FRF of
the feedforward, the FRF of the inverse feedback, or a
combination of both is measured. For that reason, more
advanced measurement techniques are needed under
feedback conditions.

The detection and characterization of the nonlinear dis-
tortions also needs to be changed. Due to the presence of a
feedback loop, the nonlinear distortions at the output of the
system will also influence the input. This destroys the spe-
cial input design that was proposed and illustrated in the
previous section. The input signal spectrum should be zero
at the detection lines (no excitation), but under closed-loop
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Fourier transform U"(k),Y"(k),/ =1,...,P is calculated. The
cross- and autopower spectrum estimate is then [4]

1
P

Sl = L3 Y 0 ), Suu(k)=%ZP:IU[’](k)I2,
=1

I=

where U is the complex conjugate of U. When the measure-
ment is made under feedback conditions (see Figure 37), the
output y(f) depends on both the measured input u(t) and the
disturbance source v(t). Due to the presence of the feedback
loop, the signal u depends also on the disturbance v. As a re-
sult, the FRF measurement at frequency k converges to [S8]

&= GSrr—CSw
SrR+ICI2Sw

This expression reduces to G = G, if S,y = 0 (r dominates over
v), and G =—1/C, if Sgs = 0 (v dominates over r). For mixed
SNR, the estimate becomes a mixture of the feedforward and
feedback characteristics.
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conditions, the nonlinear distortions will now excite these
frequencies. Two strategies are proposed to deal with this
situation. First, a simple correction method is proposed and
illustrated on the measurement of the open-loop character-
istics of an operational amplifier. Next, the nonlinear distor-
tion concept is extended to more formally address the
closed-loop situation.

The presence of the feedback also makes it impossible to
impose the specially designed multisine signals with the
detection lines put equal to zero (those frequencies that
were not excited) because the feedback signal will be added
to it. To deal with that situation, two solutions are proposed.
For large SNRs, a correction algorithm is proposed to com-
pensate for the nonideal excitation signal. Only the signals
in the loop (u, y) are needed. For lower SNRs, an indirect
method is proposed that requests the availability of the ref-
erence signal 7.

Characterizing Nonlinear Distortions Under Closed-
Loop Conditions Using a First-Order Correction

If the nonlinear distortions are not too large, and the SNR
is high (for example, more than 20 dB), it can be safely
assumed that, at the excited frequencies, the reference
signal dominates the disturbances, and hence, as explained
in “Measuring the FRF of a Linear System Under Closed-
Loop Conditions,” G = G. This measured value is used to
compensate for the presence of the feedback contributions
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FIGURE 33 An operational amplifier, captured in a feedback loop.
The signals u, y are measured.
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FIGURE 34 The linear equivalent representation of the operational
amplifier setup in Figure 33.

at those frequencies where the input was assumed to be
zero. The direct feed through of these disturbing terms on
the output at the detection lines kg can then be compen-
sated for [3], [4], [76]

Ycorr (kdet) = Y(kdet) - G (kdct) u(kdet)/

where G (kdet) is an interpolated value that is obtained from
the neighboring excited frequencies. At those frequencies,
by using that R (kdet) = 0, the corrected output equals

—v_ A= 1 __—GC
Yorr =Y - GU = 1% 1+ GC

1+GC V=V

Hence, the original value of the disturbance is retrieved.
The sensitivity function 1/(1 + GC) of the closed loop is
removed, which shows that the correction results in an
“opening” of the closed loop.

Experimental lllustration on an Operational Amplifier
The results in this section are obtained from the work
reported in the publications [77], [78]; a detailed descrip-
tion of the experimental setup is given in these articles.

The previously explained methods are applied to the
characterization of an operational amplifier (OPAMP).
Such a device cannot operate in open loop due to the very
high gain at low frequencies (10,000 or more). For that
reason the OPAMP under test is captured in a feedback
loop, as shown in Figure 33.

Replacing the nonlinear system by its BLA plus the non-
linear noise term y; results in the equivalent representation
for the OPAMP setup in Figure 34.
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FIGURE 35 The nonlinear distortion analysis of an operational
amplifier (OPAMP), captured in a closed-loop setup. The signals
u(t),y(t) are measured. The feedback effects are eliminated using
a compensation algorithm. A random odd excitation is used. At the
excited frequencies, the open-loop frequency response function
(FRF) of the OPAMP is measured (red). At the unexcited frequen-
cies, the inverse of the feedback loop is measured (green crosses).
As expected, the OPAMP has a large gain at low frequencies, but
above the crossover frequency around 200 Hz, the amplitude rolls
off with 6 dB/octave. The FRF of the inverse transfer function of the
feedback 1/Gg (green) remains constant over the frequency. At low
frequencies the measurements are strongly scattered because the
nonlinear distortions to noise ratio is very low at those frequencies.

The reference signal r(f) that excites the feedback circuit is
again designed as explained earlier in this article. At the
excited frequencies, the reference signal » dominates, and
the open-loop characteristic of the OPAMP will be mea-
sured. At the detection lines the disturbances ys dominate,
and hence the inverse controller characteristic will be
obtained. The results are shown in Figure 35. Using the color
red for the feedforward and green for the feedback, the dif-
ferent FRFs become visible. As expected, the OPAMP has a
large gain at low frequencies, but above the cross-over fre-
quency around 200 Hz, the amplitude rolls off with 6 dB/
octave. This is in agreement with the results from textbooks.
The FRF of the inversed feedback (green) remains constant
over the frequency, which is again in agreement with the
resistive feedback network in Figure 33. At low frequencies,
the measurements are strongly scattered; it will be shown
below that this is because the nonlinear distortions to noise
ratio is very low at those frequencies (Figure 36).

The results of the nonparametric nonlinear distortion
analysis are shown in Figure 36, before applying the com-
pensation in (a), while the compensated results are given in
(b). The most obvious difference is the strong increase of the
nonlinear distortion level. The high-gain feedback loop
results in a very strong disturbance suppression. The high
gain is exchanged for an improved linear behavior. Without
this high disturbance rejection of the feedback loop, the
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FIGURE 36 The nonlinear distortion analysis at the output of the
OPAMP (a) before and (b) after the software elimination of the
feedback effects (see Figure 35). The figure shows the output
measured at the excited frequencies (blue), the odd (red), and
even (green) nonlinear distortions and the disturbing noise level
(black). The broken black line gives the disturbing noise level after
compensation. The nonlinear distortions in (a) are smaller than in
(b). The feedback is suppressing the nonlinear distortions. In (b),
the odd nonlinear distortions become as large as the output at the
excited frequencies. This shows that an OPAMP is a heavily non-
linear component that is linearized by the feedback loop at a cost
of the gain of the amplifier.

FIGURE 37 Measuring under feedback conditions. Observe that
the input signal u(t) depends on the reference signal r(t) and is
also affected by the disturbance v(t), so that the input is no longer
independent of the disturbances as it is the case under open-loop
measurement conditions.
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nonlinearities at low frequencies would become as large as
the actual output of the OPAMP. So it can be concluded that
the nonlinearity level will set the maximum gain that can be
obtained with an OPAMP circuit.

Characterizing Nonlinear Distortions Under
Closed-Loop Conditions: An Extended Framework

As explained before, two problems are faced to deal with
measurements under closed-loop conditions: 1) the FRF
measurement is biased, and 2) the actual excitation signal
u(t) in Figure 37 is disturbed by the nonlinear distortions
that are fed back to the input so that the detection lines are
also excited, which is in conflict with their definition. In the
previous sections, a simple linear correction method was
proposed to reduce the effects on the distortion analysis.
Here an extended framework is presented that eliminates
the bias on the FRF measurements and generalizes the con-
cepts of BLA and the stochastic nonlinear contributions to
closed-loop systems (the actuator, the plant, and the con-
troller can be nonlinear). Here an intuitive explanation is
given; see [79] for a detailed and formal discussion. The
basic idea is to use not only the measured input and output
u, y, but to also make explicit use of the availability of the
reference signal r (see Figure 37).

The Indirect FRF-Measurement Method

When a direct measurement of the BLA Gg; » is made (S5), the
nonlinear distortions Ysin Y = GpraU + Y will create a bias
Svsu

= G+ 25U,
BLA T S

Syu

GpLa = Suu

(the frequency index k is dropped to simplify the nota-
tions). In general, Sysu # 0 because, through the feedback
path, the input U depends on the nonlinear distortions Y.
The bias term Sy,;u/Suu can be eliminated by making an
indirect measurement of the BLA. The FRF Ggra is esti-
mated as the division of the BLA from the reference signal
to the input G, and from the reference to the output G,,

Gy _ Syr
Gur SUR '

GaLa, =

Nonlinear Distortion Analysis Using the Indirect Method
Define the stochastic nonlinear contributions Us,Ys with
respect to the reference signal r as

Y =GuR+7Ys,
U=GuR+Us.

A generalized definition for the stochastic nonlinearities Y
of the plant, captured in the closed loop is

Ys = Ys— Gora,Us.

The following properties of G, 4, and the generalized non-
linear distortions are shown to hold [79]
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This article studies the problem of how to deal with
nonlinear distortions in the linear system identification framework.

» Open loop, nonlinear system, and linear actuator: The
extended concepts of the BLA and the nonlinear dis-
tortions become identical to the previously defined
open-loop concepts.
Closed loop, linear system, nonlinear actuator, and nonlin-
ear feedback: In this case, Gy 5 equals the FRF of the
linear system transfer function. The generalized sto-
chastic nonlinearities Y are equal to zero. Us, Ys will
be different from zero, pointing to the global nonlin-
ear behavior of the loop. However, it will be detected
that the plant is linear. This allows the nonlinear con-
tributions in the loop to be assigned to the controller.
» Closed loop, nonlinear system, nonlinear actuator, and
nonlinear feedback: The level of the nonlinear behavior
of the plant is detected. Some precautions should be
taken when interpreting the presence of even and
odd nonlinear contributions. Precise conditions, that
can be easily verified in practice, are given in [79], to
check if the results are reliable.
These results confirm that the simplified procedure that
was explained earlier in this article can be used safely if the
SNR is more than 10 dB (bias below 10%) or 20 dB (bias
below 1%).

)

M

PUBLICLY AVAILABLE SOFTWARE

All the results in this article can be reproduced using pub-
licly available Matlab toolboxes. The motivational example
was produced using the System Identification toolbox of
Matlab (Mathworks). Alternatively, the freely available fre-
quency-domain identification toolbox FDIDENT could be
used to obtain similar results (http://home.mit.bme.
hu/~kollar/fdident/). This toolbox also includes the tools
to design the random-phase multisines and to perform the
nonparametric nonlinear analysis. In [4], all the procedures
that are presented in this article are discussed in full detail,
and the related Matlab software can be freely downloaded
from booksupport.wiley.com.

CONCLUSIONS

This article studied the problem of how to deal with non-
linear distortions in the linear system identification frame-
work. In a first step, nonparametric tools were discussed to
detect the presence and the level of the nonlinear distor-
tions and to analyze their nature (even or odd). Next, the
concept of the BLA was introduced. The dependency of the
BLA on the user choices was studied (choice of the excita-
tion signal, and choice of the approximation criterion).
Optimal measurement strategies to measure the FRF of the

BLA were presented, and eventually the impact of the non-
linear distortions on the linear parametric identification
approach were discussed. All these methods were illus-
trated on real-life examples.
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