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L
inear system identification [1]–[4] is a basic step in modern con-
trol design approaches. Starting from experimental data, a lin-
ear dynamic time-invariant model is identified to describe the 
relationship between the reference signal and the output of the 
system. At the same time, the power spectrum of the unmod-

eled disturbances is identified to generate uncertainty bounds on the 
estimated model.

Linear system identification is also used in other disciplines, for 
example, vibrational analysis of mechanical systems, where it is called 
modal analysis [5], [6]. Because linear time-invariant models are a basic 
model structure, linear system identification is frequently used in elec-
trical [7]–[10], electronic, chemical [11], civil [12], and also in biomedical 
applications [13]. It provides valuable information to the design engi-
neers in all phases of the design process.

Starting from the late 1960s, system identification tools have been 
developed to obtain parametric models to describe the dynamic 
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behavior of systems. A formal framework is set up to study 
the theoretical properties of the system identification algo-
rithms [1]–[3]. The consistency (does the estimated model 
converge to the true system as the amount of data grows?) 
and the efficiency (is the uncertainty of the estimated 
model as small as possible?) are analyzed in detail. Under-
lying all these results are the assumptions that the system 
to be modeled is linear and time invariant.

It is clear that these assumptions are often (mostly?) not 
met in real-life applications. Most systems are only linear 
to a first approximation. Depending on the excitation 
level, the output is disturbed by nonlinear distortions so 
that the linearity assumption no longer holds. This imme-
diately raises doubts about the validity of the results 
obtained and validated by the linear system identification 
framework. The term nonlinear distortions indicates that 
nonlinear systems with a (dominant) linear term are con-
sidered. The deviations from the linear behavior are called 
nonlinear distortions.

Moreover, because a linear model cannot capture the 
nonlinear distortions, it may be necessary to identify a 
nonlinear model to obtain results that are useful and reli-
able. The identification of nonlinear models requires more 
data and is more involved than linear identification. Cur-
rently, identification of nonlinear systems is a hot research 
topic, but the nonlinear identification framework has not 
yet reached the same level of maturity as linear identifica-
tion theory [13]–[21] has. Since the cost of a nonlinear 
approach is significantly higher, additional information is 
needed to guarantee that there will be sufficient return on 
the additional needed investments of time, money, and 
human resources.

This article addresses the following issues:
»» First, a nonlinearity analysis is done to look for the 
presence of nonlinearities in an early phase of the 
identification process. The level and nature of the 
nonlinearities should be retrieved without a signifi-
cant increase in the amount of measured data.

»» Next, we check whether it is safe to use a linear 
system identification approach, even if the presence 
of nonlinear distortions is detected. The properties of 
the linear system identification approach under these 
conditions are studied, and the reliability of the 
uncertainty bounds is checked.

»» Using tools provided in this article, a determination 
is made about the benefits of using a nonlinear 
model.

Addressing these three questions forms the outline of this 
article. The possibilities and pitfalls of using a linear iden-
tification framework in the presence of nonlinear distor-
tions will be discussed and illustrated on lab-scale and 
industrial examples.

In this article, the focus is on nonparametric and para-
metric black box identification methods; however, the 
results might also be useful for physical modeling methods. 

Knowing the actual nonlinear distortion level can help 
to choose the required level of detail needed in the physi-
cal model. This will strongly influence the modeling 
effort. Also, in this case, significant time can be saved if it 
is known from experiments that the system behaves 
almost linearly. The converse is also true. If the experi-
ments show that some (sub-)systems are highly nonlin-
ear, it helps to focus the physical modeling effort on these 
critical elements.

Three major steps are made to reach the main goals. 
First, a motivational example is given, using linear sys-
tem-identification tools in the presence of nonlinear dis-
tortions. This will give a first idea about the possibilities 
and problems. Next, a nonparametric nonlinear distortion 
analysis is proposed and illustrated on many real-life exam
ples.  It includes experiment design, nonparametric pre-
processing, and how to deal with closed-loop measurement 
conditions. In the first approach, open-loop measurement 
conditions are considered; the closed-loop measurement 
conditions are postponed until the end of the article. To gen-
eralize the linear framework to include nonlinear effects, a 
new paradigm is developed, representing nonlinear sys-
tems using the best linear approximation (BLA) plus a 
nonlinear noise source. First, an analysis of the impact of 
the user choices is made (choice of the excitation signal, 
the convergence criteria, and the approximation criterion). 
Next, a mathematical framework is introduced to give a 
sound theoretical basis for the description of nonlinear 
systems using linear models. The concept of the BLA is for-
mally introduced, and an optimized measurement strategy 
to measure the frequency-response function (FRF) is devel-
oped. Again, these results are illustrated by some lab-scale 
and real-life examples. This is followed by a study of the 
impact of nonlinear distortions on the parametric linear 
identification framework. At the end of the article, a short 
discussion about publicly available software is given, fol-
lowed by the conclusions.

This article is an extension of the keynote address that 
was given at The 13th International Workshop on Advanced 
Motion Control (AMC2014) [22].

A motivational example
Consider the test setup in Figure 1. The electronic circuit 
mimics a nonlinear mechanical system with a hardening 
spring. Such a system is sometimes called a forced Duffing 
oscillator [23], [24]. This class of nonlinear systems has a 
very rich behavior, including regular and chaotic motions, 
and generation of subharmonics. The system is excited 
with an input u(t) (the applied force to the mechanical 
system). The output of the system corresponds to the dis-
placement y(t).

This system can be schematically represented as a sec-
ond-order system with a nonlinear feedback. It is excited 
with a low-pass random excitation with a maximum excita-
tion frequency of 200 Hz, as shown in Figures 2 and 3.
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Modeling the Nonlinear System  
Using Linear System Identification Tools
A linear approximating model will be estimated to describe 
the input–output relation of the system from the flat tail part. 
The tail is split in ten subrecords with a length of 8692 points, 
and each of these is used to identify a second-order, discrete-
time plant model and a sixth-order noise model using  
the Box–Jenkins model structure of the prediction-error 

method [1], [2]. The estimated second-order plant transfer 
function is shown in Figure 4.

Using this model, the output is “simulated,” which is the 
identification term used to indicate that the output is calcu-
lated from the measured input. The simulation error, which 
is the difference between this simulated and measured 
output, is shown in Figure 5 (time domain) and Figure 6 
(frequency domain) for the last subrecord. The latter shows 
also the 95% amplitude bound of the simulation error that 
is calculated from the estimated sixth-order noise model. 
From these results, it can be concluded that a linear model 
still gives a reasonable approximation of the output of the 
nonlinear system. Moreover, the power spectrum of the 
errors is well captured by the noise model, even if the dom-
inating error is, in this case, the nonlinear distortions of the 
system. That part of the nonlinear distortions that cannot 
be captured by the linear model is added to the noise dis-
turbances in the linear identification framework. The 
whiteness test of the residuals in Figure 7 shows that the 
estimated noise model describes well the power spectrum. 
But from the cross-correlation test between the input and 
the residuals, it can be seen that there are still some unex-
plained linear relations. Observe that the largest spikes 
occur at negative lags, which indicates the need for non-
causal terms in the BLA [25]. Since the identification is not 
done under closed-loop conditions, this behavior can only 
be due to the nonlinear nature of the system.
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Figure 2  The system is excited with a low-pass signal, with a 
maximum excitation frequency of 200 Hz. The excitation signal 
consists of two parts. The tail part consists of ten subexperiments, 
and each of these is a realization of a random signal and will be 
used to estimate a linear model (Box–Jenkins structure) to model 
the data. The arrow-like part will be used to validate the estimated 
model. Observe that at the end of the arrow, the excitation level is 
larger than the tail amplitude. This gives the possibility to test the 
extrapolation capacity of the linear model.
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Figure 3  The amplitude spectrum of the (a) input and (b) output 
signal. The spike at 250 Hz is a harmonic disturbance of the mains.
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Figure 1  A forced Duffing oscillator. (a) The electronic circuit 
mimics a nonlinear mechanical system with a hardening spring. 
Such a system is sometimes called a forced Duffing oscillator. The 
system is excited with an input u(t) (the applied force to the 
mechanical system). The output of the system corresponds to the 
displacement y(t). The schematic representation of the system is 
given in (b) as a second-order system with a nonlinear feedback.
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Validation of the Linear Model
In a second step, the identified linear model is validated on 
the arrow-like part of the data. This is a challenging test 
because the excitation level on part of the data exceeds that 
of the tail that is used to estimate the linear model. From 
Figure 8, it is seen that the errors become very large once 
the excitation level exceeds that of the tail part. The approx-
imating linear model fails completely under these condi-
tions because it cannot capture the underlying nonlinear 
behavior of the system outside the domain where it was 
fitted to the data.

Analysis of the Model Uncertainty
The estimation procedure resulted in the plant and noise 
model. From this information it is possible to also obtain an 
estimate of the uncertainty on the results. In Figure 4, the 
estimated standard deviation of the transfer function is com-
pared with the sample standard deviation calculated from 
the repeated estimates on the ten subrecords. Both curves 
look very similar, but the model-based estimated value 
(green) underestimates the actual observed standard devia-
tion (red) by 50% or more because the linear identification 
framework fails to estimate precisely the uncertainty in the 
presence of nonlinear distortions. The user should keep in 
mind that the confidence bounds are wrong whenever they 
are used during the design.

Conclusions
The results from the motivational example show that even 
in the presence of significant nonlinear distortions, it is still 
possible to obtain a useful linear approximation with the 
classical linear identification methodology. This model is 
only reliable under the conditions that it is obtained. 
Changing the excitation, as was done in the validation test, 
can lead to very large errors. Moreover, the uncertainty 
bounds that are obtained from the linear identification 
framework are unreliable. When the nonlinear distortions 
dominate the disturbing noise, significant underestimation 
of the variances appears. This problem will be analyzed in 
more detail later in this article in the section on the para-
metric estimation of the BLA.

How to Deal with Nonlinear Systems  
in System Identification
From these observations, the reader could decide that, in 
the presence of nonlinear distortions, it is better to build a 
complete nonlinear model. But this choice is not without 
its own drawbacks. Nonlinear identification is more 
involved and often more time consuming. This leads to 
more experiments and longer development times. More-
over, most engineers and designers are often very familiar 
with linear design tools, but they are not trained in dealing 
with nonlinear systems. In many cases, imperfect models 
with known error bounds are still very useful to make a 
design that meets the requested specifications. To follow 
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Figure 4  The amplitude of the estimated transfer function model is 
shown (the blue line). Green line: the theoretic standard deviation 
of the estimated plant model, calculated from the estimated noise 
model. Red line: the actual observed standard deviation of the esti-
mated plant model, estimated from the variations of the estimated 
plant model over the ten subrecords. It can be seen that the actu-
ally observed standard deviation is underestimated by 4 dB by  
the theoretical results. This leads to too small error bounds.
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Figure 5  The output of the forced Duffing oscillator is simulated 
using an estimated Box–Jenkins model (plant model order two poles 
and two zeros, noise model order six poles and six zeros). The blue 
line is the measured output, the red line is the simulation error.
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Figure 6  The output of the forced Duffing oscillator is simulated 
using an estimated Box–Jenkins model (plant model order two 
poles and two zeros, noise model order six poles and six zeros). 
The amplitude of the discrete Fourier transform of the measured 
output and the simulation error are shown. The blue dots are the 
measured output, and the red dots are the simulation error. The 
green line is the 95% error level calculated from the estimated 
noise model.
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this strategy, tools are needed to detect, in an early phase 
of the modeling process, the presence of nonlinear distor-
tions and to quantify their level. On the basis of this infor-
mation, the design engineer can decide whether a cheaper 
linear identification approach can be made or if the more 
expensive nonlinear identification framework should be 
used. Using imperfect linear models is not a problem as 
long as the user understands very well the validity of the 
linear models and knows what will be the impact of non-
linear distortions. The major goal of this article is to pro-
vide this background by discussing the three main topics 
that were formulated at the end of the introduction: 1) 
detection and characterization of nonlinear distortions, 2) 
extending the linear framework to include the effect of 
nonlinear distortions, and 3) quantifying the potential 
gain by switching from a linear to a nonlinear identifica-
tion framework.

Detection, qualification, and quantification 
of the nonlinear distortions
In this section, tools will be presented that allow the user to 
detect and analyze the presence of nonlinear distortions 
during the initial tests. Without needing more experiments, 
the FRF of the BLA, the power spectrum of the disturbing 
noise, and the level of the nonlinear distortions will be 
obtained. All these results are obtained from a nonpara-
metric analysis so that no user interaction is needed. At the 
basis of the proposed solution is the use of well-designed 
periodic excitations. The restriction to periodic signals is the 
price to be paid to access all this information. The user can set 
the desired frequency resolution and desired power spec-
trum of the excitation signal. The phase will be chosen ran-
domly on .[ , )0 2r  First, the response of a nonlinear system to 
a periodic excitation is studied, and then how to design good 
periodic excitation signals is explained. Eventually, these sig-
nals will be used to make a nonparametric distortion and 
disturbing noise analysis.

The nonlinear distortion analysis is initially made under 
open-loop measurement conditions. The discussion of how 
to operate under closed-loop conditions is postponed, 
because to do so the concept of BLA, which will be intro-
duced later in this article, is needed.

The Response of a Nonlinear  
System to a Periodic Excitation
A linear time-invariant system cannot transfer power from 
one frequency to another. In contrast, a nonlinear system 
can transfer power from one frequency to another. Under-
standing this power transfer mechanism is an essential 
tool in the detection and analysis of nonlinear distortions 
[26]. Consider a cosine signal passed through a cubic static 
nonlinear system y = u3
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Figure 7  An analysis of the residuals of the Box–Jenkins fit for the 
last subexperiment. (a) The autocorrelation of the output innova-
tions (the residuals that are whitened with the estimated noise 
model). A few points are outside the 95% interval. For a perfect fit, 
the innovations should be white, and 95% of the blue dots should 
be in the yellow uncertainty band. This points to a good, but not, 
perfect model. This is also confirmed by the cross-correlation 
between the input and the output innovations shown in (b). Many 
points are outside the 95% uncertainty interval. Moreover, strong 
correlations for negative lags can be observed. This points to a 
noncausal linear relation, it is possible to improve the linear model 
by including also future input data. This noncausal behavior is also 
discussed in [25].
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Figure 8  Validation of the model. The output of the system on a 
slowly growing noise excitation is simulated. The model does well 
for small inputs, but it fails for large inputs. The simulation error 
becomes very large at the end of the amplitude sweep. Such a 
behavior points often to nonlinear distortions.
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The signal has a positive and negative frequency, as 
shown in Figure 9. The steady-state output of the nonlin-
ear system is

	 ( ) ( ) ( ) ( ) ( ) .y t u t e e e e e ej t j t j t j t j t j t3= = + + +~ ~ ~ ~ ~ ~- - -

In the calculation of this product, terms of the form 
e e e e ( )j t j t j t j t=! ! ! ! ! !~ ~ ~ ~ ~ ~  appear [Figure 9(b) for ~  = 1], 
resulting eventually in the frequency components –3, –1, 1, 
3, as shown in Figure 9(c).

This result can be generalized. Consider a nonlinear 
system ,y u= a  excited at the frequencies , , , .k F1k! f~ =  
The frequencies at the output of such a system are given by 
making all possible combinations of a  frequencies, includ-
ing repeated frequencies, selected from the set of 2F excited 
frequencies

	 , { , , , , , } .withk
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k F F
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Every static nonlinearity ( )y f u=  can be approximated 
arbitrarily well in least-squares sense, under some regular-
ity conditions, by a polynomial y a uP

P

1
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a

a
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/
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for some specified classes of inputs. On each of the mono-
mial terms a ua a  in the sum, the previous analysis can be 
applied, and hence it is very simple to know all the frequen-
cies that can appear at the output of a static nonlinear system.

The result can be further generalized to dynamic non-
linear systems, using Volterra series [18]. A formal develop-
ment is given in [3, pp. 74–75] and illustrated in a set of 
Matlab exercises in [4]. Under some regularity conditions, 
the Volterra series can approximate arbitrarily well fading-
memory systems and discontinuous nonlinear systems 
[27]. Because a periodic input results in a periodic output 
with the same period, it is clear that a Volterra series cannot 
be used to describe a chaotic system because chaotic sys-
tems have no periodic output for a periodic input.

Design of a Multisine for Nonlinear Detection and 
Frequency Response Function Measurements
The choice of the excitation signal is extremely important 
in a nonlinear framework. The behavior of a nonlinear 
system depends on both the power spectrum and the 
amplitude distribution of the applied excitation signal [3], 
as shown in Figure 23. In this article, signals with a Gauss-
ian amplitude distribution will be used.

Gaussian random noise excitations [Figure 10(a) and (d)] 
are very popular among practicing engineers because they 
seem to be simple to design. However, in this article, peri-
odic excitations are used because these signals offer signifi-
cant advantages for making a nonparametric nonlinear 
distortion analysis. It will be shown later in the article, in 
the section on Riemann-equivalent excitation signals, that 

the results obtained with the periodic excitation can also be 
transferred to random Gaussian noise excitations after proper 
normalization [28].

One possibility to generate a periodic signal is to peri-
odically repeat a finite segment of a random noise sequence 
[Figure 10(b) and (e)]. However, using a random-phase 
multisine [Figure 10(c) and (f)] [3], [4], [28] gives a much 
better control over the amplitude spectrum of the excita-
tion, resulting in lower uncertainties on the measured FRF. 
Consider the signal

	 ,u t
N

U e1
/

/

k
k N

N
j kf t

0
2 1

2 1
2 k0= r {

=- +

-
+^ ^h h/ � (2)

	 ,cos
N

U kf t2 2
/

/

k
k N

N

k
2 1

2 1

0r {= +
=- +

-

^ h/ � (3)

where k k{ {=--  and , ,U U U 0k k 0= =-  and / / .f f N T1s0 = =  
The sample frequency to generate the signal is fs, and T is 
the period of the multisine. The phases k{  will be selected 
independently such that { } ,E e 0j k ={  for example by select-
ing a uniform distribution on the interval [ , ) .0 2r  The 
amplitudes Uk are chosen to follow the desired amplitude 
spectrum [Figure 10(f)]. See [28] for a detailed discussion 
about the user choices and the properties of these signals. 
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Figure 9  (a) The spectrum of a sinosoid that is passed through a 
cubic nonlinearity y = u3. The frequencies of the (c) output spec-
trum are obtained by making the sum over each of all possible 
combinations of three frequencies selected from the (b) input fre-
quencies, for ~ = 1. Keep in mind that both the positive and the 
negative frequencies should be considered.
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The major advantage of the random-phase multisine is that 
it still has (asymptotically for sufficiently large N) all the 
nice properties of Gaussian noise, while it also has the 
advantages of a deterministic signal: the amplitude spec-
trum does not show dips at the excited frequencies [see 
Figure 10(f)] as the two other signals do [see Figure 10(d) 
and (e)]. At those dips, the measurements are very sensitive 
to all nonlinear distortions and disturbing noise.

Remark
Initially, multisine excitations were introduced for the FRF 
measurement of linear dynamic systems [29]. To maximize 
the signal-to-noise ratio (SNR) of the measurements, an 
intensive search for compact signals was made. For a given 
amplitude spectrum, the phases were chosen such that the 
peak value of the signal is minimized [30]. Alternatively, 
well-designed binary signals could be used [31]. Although 
these compact signals are superior for linear measurements, 
they are not so well suited to measure the FRF in the pres-
ence of nonlinear distortions. It will be explained in this 
article (see Figure 23) that the linearized measurements 
depend strongly on the amplitude distribution of the excita-
tion. The specially designed multisines with a minimized 
peak factor have an amplitude distribution that is close to 
that of a sine excitation (a high probability to be close to the 
extreme values, a low probability to be around zero, as 
shown in Figure 23). Random-phase multisines are asymp-
totically (with growing number of frequencies) Gaussian 
distributed, which is often preferred in applications. More-
over, it will be possible to make explicit statements on the 
properties of the linear approximation and the remaining 
errors for the latter case. For that reason, the focus will be 
from here on random-phase multisines and random Gauss-
ian excitations. More information on the impact of the 

amplitude distribution on the linear approximation can be 
found in [32] and [33].

User Guidelines
»» Use random-phase multisine excitations.
»» The spectral resolution f0 of the multisine should be 
chosen high enough so that no sharp resonances are 
missed [34]. Since f0 = 1/T, it sets immediately the 
period length T of the multisine. A high-frequency 
resolution requires a long measurement time because 
at least one, and preferably a few, periods should be 
measured.

»» The amplitude spectrum should be chosen such that 
the frequency band of interest is covered. The signal 
amplitude should be scaled such that it also covers 
the input amplitude range of interest.

In the nonlinear distortions are shown to be easily detected 
by putting some amplitudes Uk in (2) equal to zero for a 
well-selected set of frequencies.

A detailed step-by-step procedure of how to generate 
and process periodic excitations is given in [4, Chap. 2].

Riemann-Equivalent Excitation Signals
The goal is to characterize a nonlinear system for Gauss-
ian excitation signals, using random-phase multisines. 
The design of the amplitude spectrum of the multisine 
should be such that the equivalence between the random-
phase multisine and the Gaussian random noise with 
respect to the nonlinear behavior is guaranteed. To do so, 
the equivalence class ESU  is defined that collects all sig-
nals that are (asymptotically) Gaussian distributed, and 
have asymptotically, for ,N " 3  the same power on each 
finite frequency interval. This is defined precisely in the 
next definition.

Gaussian Noise Periodic Noise Random Multisine

Time
(a) (b) (c)

Frequency
(d) (e) (f)

Figure 10  Examples of excitation signals in time and frequency domain: (a), (d) Gaussian noise; (b), (e) periodically repeated Gaussian 
noise; and (c), (f) random-phase multisine. In the frequency domain, the amplitude spectrum of the actual realization (blue) and the 
power spectrum (red) is shown.
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Definition 1
Riemann-equivalence class ESU  of excitation signals. Consider a 
power spectrum ( )SU X  that is piecewise continuous, with a 
finite number of discontinuities. A random signal belongs 
to the equivalence class if:

1)	 It is a Gaussian noise excitation with power spectrum 
( ) .SU X

2)	 It is a random multisine or random-phase multisine 
such that
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Using the Riemann equivalence, it is possible to use 
periodic random-phase multisines to characterize the 
properties of the nonlinear system excited with filtered 
Gaussian noise. This will be explained in the next section.

Detection, Separation, and Characterization of the 
Nonlinear Distortions and the Disturbing Noise
This article presents only the basic principles of the nonlin-
ear distortion analysis; see [3] for a more detailed discussion.

Detection and Characterization  
of the Nonlinear Distortions
The basic idea, which is illustrated in Figure 11, is very 
simple and starts from a multisine (2) that excites a 
well-selected set of odd frequencies [odd frequencies cor-
respond to odd values of k in (2)]. This excitation signal is 
applied to the nonlinear system under test. Even nonlin-
earities show up at the even frequencies because an even 
number of odd frequencies is added together. Odd nonlin-
earities are present only at the odd frequencies because an 
odd number of odd frequencies is added together. At the 
odd frequencies that are not excited at the input, the odd 
nonlinear distortions become visible at the output because 
the linear part of the model does not contribute to the 
output at these frequencies (for example, frequencies five 
and nine in Figure 11). By using a different color for each of 
these contributions, it becomes easy to recognize these in 
an amplitude spectrum plot of the output signal.

Disturbing Noise Characterization
In the next step, the disturbing noise analysis is made. By 
analyzing the variations of the periodic input and output 
signals over the measurements of the repeated periods, the 
sample mean and the sample (co-)variance of the input and 
the output disturbing noise can be calculated, as a function 
of the frequency. Although the disturbing noise varies 
from one period to the other, the nonlinear distortions do 
not so they remain exactly the same. This results eventually 
in the following simple procedure: consider the periodic 

signal u(t) in Figure 12. The periodic signal is measured 
over P periods. For each subrecord, corresponding to a 
period, the discrete Fourier transform is calculated using 
the fast Fourier transform (FFT) algorithm, resulting in the 
FFT spectra of each period ( ), ( ),U k Y k[ ] [ ]l l  for , , .l P1 f=  
Because an integer number of periods is measured, there 
will be no leakage in the results. The sample means 
( ), ( )U k Y kt t  and noise (co)variances ( ), ( ), ( )k k kU Y YU

2 2 2v v vt t t  at 
frequency k are then given by
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Figure 11  A design of a multisine excitation for a nonlinear analy-
sis. (a) A selection of the excited frequencies at the input and at 
the output: (b) linear, (c) even, (d) odd contributions, and (e) total 
output.

t

u (t )

u [1](t ) u [2](t ) u [l ](t ). . . . . .

Figure 12  A periodic signal used to outline the procedure for cal-
culating the sample mean and variance.
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In (4), (.)H  denotes the complex conjugate. The variance 
of the estimated mean values ( )U kt  and ( )Y kt  is ( )/k PU

2vt  and 
( )/ ,k PY

2vt  respectively. Adding together all this information 
in one figure results in a full nonparametric analysis of the 
system with information about the system (the FRF), the 
even and odd nonlinear distortions, and the power spec-
trum of the disturbing noise. Note that no interaction with 
the user is needed during the processing. This makes the 
method well suited to be implemented in standard mea-
surement procedures.

Combining Multiple Realizations of the Random Input
This measurement can be repeated over M realizations of 
the random-phase multisine by generating each time a new 
multisine excitation with another random-phase realization. 
The results can then be averaged over these realizations to 
obtain more reliable estimates of the distortion and noise 
levels. At the same time, the standard deviation of the FRF, 
due to the nonlinear distortions and the disturbing noise, 
will be reduced by .M

In [35] and [36], a detailed analysis is given of how these 
ideas can be generalized to deal with initial transient 
effects in single-input, single-output and multiple-input, 
multiple-output (MIMO) FRF measurements.

User Guidelines
»» Design a random multisine excitation following the 
guidelines specified earlier in this article.

»» Excite the system with the multisine and measure 
P 2$  periods of the steady-state response.

»» Repeat this procedure for M successive realizations 
of the random-phase multisine.

»» Choose P, M such that within the available measure-
ment time the number of repetitions M is as large as 
possible. This advice can be refined, depending on 
the prior knowledge of the user.

•• No prior knowledge available: select P = 2, and M 
as large as possible.

•• Maximize the nonlinear detection ability: M = 2, 
and P as large as possible.

•• If it is known that the nonlinear distortions domi-
nate: P = 1, and M as large as possible (the disturb-
ing noise level will not be estimated in this case).

Characterizing nonlinear distortions: 
experimental illustrations
In this section, a series of experimental illustrations are 
presented. The first example is the forced Duffing oscilla-
tor that was already used in the motivating example. The 
second and third examples are industrial applications (air 
path characterization of a diesel engine, and a ground 
vibration test of an F-16 fighter).

Characterization of a Forced Duffing Oscillator
The nonlinear analysis method is experimentally illustrated 
on the electronic circuit (see Figure 1) [3], [21], [37]. Although 
this is a nonlinear feedback system, it behaves as a fading-
memory system [27] for sufficiently small input amplitudes, 
and hence the proposed method can be applied.

The following settings were used to make the measure-
ments: sample frequency is about 1220 Hz, the period 
length is 4096 samples, the frequency resolution is 

.f 0 30 Hz0 . , and the maximum excited frequency is 
200 Hz. Only the odd frequencies are excited, and in each 
block of five consecutive odd frequencies, the amplitude of 
one randomly selected frequency is put to zero so that it 
can be used as a nonlinear detection line. All the excited 
frequencies have the same amplitude. For each realization, 
three periods of the output were measured. The first period 
is dropped to avoid initial transient effects.

In Figure 13, the evolution of the nonlinear distortions 
as a function of the frequency is shown for different excita-
tion levels. These distortion levels can be compared to the 
output at the excited frequencies to obtain an idea about the 
relative distortion levels and the SNR. It can be seen that, 
for a low excitation level, the presence of odd nonlinear dis-
tortions is detected around the resonance frequency. When 
the excitation level grows, the odd nonlinear distortions 
grow faster than the even ones, while the observed disturb-
ing noise level remains almost the same. This figure is very 
informative for the designer. For small excitation levels 
[Figure 13(a)], the nonlinear distortions are 30 dB below the 

Even in the presence of significant nonlinear distortions,  

it is still possible to obtain a useful linear approximation with  

the classical linear identification methodology.
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linear contributions. In that case, a linear model can be 
used if a moderate precision is sufficient. For higher excita-
tion levels [Figure 13(d)], it is clear that the nonlinear distor-
tions can no longer be neglected since the nonlinear 
distortions are as large as the linear contributions. In that 
case, a full nonlinear model will be needed. All this infor-
mation is directly available from a simple nonparametric 
nonlinear analysis that requests no user interaction. It can 
be easily implemented in a measurement instrument. The 
figure also shows the level of the disturbing noise. This 
level remains constant in the first three experiments but 
grows significantly in the last one. This might be due to a 
nonlinear mixing of the process noise and the signals in the 
loop, leading to signal-dependant noise levels.

Characterization of the Air Path of a Diesel Engine
The results and figures in this section are taken from [38]. 
The goal of the thesis was the design of a control system for 
heavy-duty diesel engines that is capable of combining a 
low fuel consumption with low emissions of nitrogen 
oxides (NOx) and particulate matter (PM) [39], [40]. In addi-
tion, these properties should be maintained when distur-
bances are present. The control design for the diesel engine 
air path is considered. A feature of the control system to be 
designed was that the required design effort is low. Air-
path control is particularly interesting. It is challenging 
and time consuming to calibrate using current control 
methods. Moreover, the air path contains a variety of sen-
sors and actuators, which means that within the current 
hardware constraints, several control layouts are possible. 
The main actuators in the air path are the variable geome-
try turbine (VGT) and exhaust gas recirculation (EGR) 

valve (see Figure 14). The VGT and EGR valve are used as 
inputs. The NOx emissions, air-fuel equivalence ratio ,m  
and pressure difference DP between the intake and exhaust 
manifold are the considered outputs. The nonlinear engine 
behavior is reduced to a series of linear submodels, where 
each submodel describes the engine behavior in a part of 
the speed-load operating range. Since the controllers are 
designed using the local linear properties, they do not 
make full use of the actual nonlinear system description. A 
nonlinear distortion analysis provides the necessary infor-
mation to verify the validity of this approach.

The FRF and the nonlinear distortion levels of the diesel 
engine are measured at the operating point 1455 r/min and 
120 mg/injection. To separate both transfer functions 
(respectively, from the VGT and the EGR inputs), two zip-
pered multisines are created [7], [11] so that nonoverlap-
ping frequency grids are used for both inputs. This allows 
the two FRFs to be measured in a single experiment. The 
inputs were normalized on the maximum of the corre-
sponding actuator position, and the amplitudes were set to 
0.7%. The results are given in Figure 15 showing the NOx 
emissions in (a), the engine-out air-fuel equivalence ratio in 
(b), and the pressure difference between intake and exhaust 
manifold y p9  in (c). The nonlinear distortions were scaled 
with the normalized input levels so that they can be plotted 
in the FRF figures [38]. From Figure 15, it can be concluded 
that the nonlinear distortions are well above the disturbing 
noise level. The level of the nonlinearities is about a factor 
ten below the linear contributions for the actual settings. 
There is no clear dominance of the even or odd nonlineari-
ties in the first two figures, however for the p9  signal, the 
even nonlinearities dominate. On the basis of these results, 
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Figure 13  A nonparametric analysis of the nonlinear distortions on a forced Duffing oscillator. The system is excited at a well-selected set 
of frequencies as explained in the section. “Design of a multisine for nonlinear detection and frequency response function measurements.” 
The nonlinearities become visible at the unexcited frequencies. Black dots: output at the excited frequencies, red bullets: odd nonlinearities,   
blue stars: even nonlinearities, and green line: disturbing noise level. The excitation level is growing from (a) to (d). Observe that the level 
of the nonlinear distortions grows with the excitation level, while the disturbing noise level remains almost constant.
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the control engineer can decide that a linear control design 
can still be used, keeping in mind that model errors up to 
10% are present. The nonlinear distortion levels are useful 
to set uncertainty bounds on the FRF that can be used in 
robust control design.

Ground Vibration Test on an Air Fighter
Ground vibration testing (GVT) is an essential step in the 
development of a new aircraft. Also, after each structural 
modification, new GVT should be done. From these tests, 
the dynamical characteristics of the air plane are obtained. 
These are necessary to update the finite element models 
that are used, for example, during a flutter analysis. These 
tests should be conducted in a very short time period 
because the test is made in the critical path of the 
development program. An introduction to the state of the 
art of GVT can be found in [41], which states that the major 
goal of GVT is to measure the eigenfrequencies, the mode 
shapes, the generalized mass and damping matrices, and 
FRFs. Also, the structural nonlinear behavior must be stud-
ied. Measurement and excitation strategies are developed 
to minimize the required total measurement time (for 
example, nine days to test the Airbus A350XWB). The exci-
tation signals should meet level constraints and also the 
hardware limitations should be respected. At the same 
time, good SNRs should be obtained.

The measurement strategy that was presented earlier in 
this article allows the user to meet all these customer 
requirements, and go even beyond these expectations. This 
is illustrated on GVT of a General Dynamics (now Lock-
heed Martin) F-16 Fighting Falcon 16. During the measure-
ment campaign, shakers were put at the right and left wing 
tip, and the accelerations are measured at 140 places. The 
results shown here focus on the wing-to-payload mounting 
interfaces. For large-amplitude vibrations, friction and 
gaps may be triggered in these connections and markedly 
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Figure 15  The measurement of the frequency response function 
and the nonlinear distortion levels of the diesel engine for the oper-
ating point 1455 r/min and 120 mg/injection [38]–[40]. The figures 
show, respectively, the (a)  NOx emissions, the (b) engine-out air-
fuel equivalence ratio m , and the (c) pressure difference between 
intake and exhaust manifold p9 . The black and grey lines show 
the frequency response function from the variable geometry tur-
bine and the exhaust gas recirculation, respectively. The blue, red, 
and green dots show, respectively, the odd and even nonlineari-
ties, and the disturbing noise level. From these figures, it can be 
concluded that the nonlinear distortions are well above the disturb-
ing noise level. It can be seen that the nonlinear distortions are 
about a factor 10 below the linear contributions for the actual set-
tings. The p9  signal is dominated by the even nonlinearities.
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Figure 14  A schematic of the air path of a turbocharged diesel engine. A nonparametric measurement of the frequency response func-
tion and the nonlinear distortions analysis is conducted around a fixed operating point  [38]–[40].
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impact the dynamic behavior of the complete structure. 
The right wing shaker is used, and the accelerations at a 
point close to the mounting interface are analyzed.

The data were measured with a sample frequency  fs = 
200 Hz. A multisine with a period length of about 41 s  ( f0 = 
0.0244 Hz) is used. Only the odd frequencies between 1 Hz 
and 60 Hz are excited, and in each group of four odd fre-
quencies one line is not excited. It is used as a detection line 
for the odd nonlinear distortions. The results for the fre-
quency band between 3 and 11 Hz are shown in Figure 16 
for the intermediate excitation level. These measurements 
show that the nonlinear distortion levels are far above the 
noise level. So, the uncertainty on the linear measurements 
(such as FRF and damping estimates) are completely domi-
nated by the nonlinear behavior, and hence they should be 
used with care. The resonance around 7 Hz corresponds to 
the first mode of the wings, which also excites the wing-to-
payload mounting interface at the tip of the wing. The non-
linear distortions are largest around this resonance and are 
dominated by an odd linear behavior. Later on in this arti-
cle,  it will be explained that this will result in an excitation-
dependent resonance frequency and damping. Both will 
shift by a changing excitation level.

Observe that the disturbing noise levels are at –40 to 
–60 dB, which is very good for mechanical measurements. 
This illustrates that the proposed measurement strategy 
meets all the formulated expectations for good GVT. In a 
single experiment, it is possible to measure the mode shapes 
and the resonance frequencies, together with a full nonlinear 
signature of the nonlinear behavior of the tested structure. 
The measured FRFs will be discussed later (see Figure 30).

Nonlinear distortions characterization: 
alternative methods
In the first part of this article, a nonlinear distortion analy-
sis method was presented that strongly relies on the use of 
random-phase multisines with a well-designed frequency 
grid. Alternative approaches to detect the presence of non-
linear distortions are described in the survey article [42], 
and [43], with a focus on mechanical applications. Among 
others, the following methods are discussed: superposition 
principle and homogeneity principle [44]; overlaid Bode 
plot and Nyquist plot distortions [45]; coherence function 
measurements [3], [46]; bispectral analysis [47], [48]; Hilbert 
transform [49]; and correlation methods [50], [51].

This article discusses two alternative methods in more 
detail: the higher-order sinusoidal input describing func-
tions (HOSIDFs) and the swept sine test. There are three 
reasons for this choice:

»» These methods can be considered as special cases of the 
previously presented framework in which the multisine 
signal is replaced by a single (swept) sine excitation.

»» The HOSIDFs are an elegant and practical useful 
generalization of the concepts that are presented in 
this article.

»» The swept sine analysis provides additional non-
parametric information about the nonlinear distor-
tion in mechanical vibrating systems.

Higher-Order Sinusoidal Input Describing Functions
The HOSIDFs are a generalization of the sinusoidal input 
describing function [52] and describe the gain and phase 
relation of a system between the input at the fundamental 
frequency f0  and the output at the harmonics kf0 , using a 
sinusoidal input signal [53]

	 ( , ) ( )/ ( ),G f a Y kf U fk s
k

0 0 0=

where a indicates the amplitude of the excitation signal. 
The method can be used under feedback conditions [54]. 
The HOSIDFs give a simple description of complex non-
linear behaviors of mechanical systems, for example, the 
transition from stick to sliding in precision mechatronic 
systems [55].

An electromechanical shaker drives a sledge that is prone 
to dry friction mainly created by the dry friction finger, 
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Figure 16   A ground vibration test on the (a) General Dynamics 
F16 fighter jet. The right wing is excited with a shaker, and the 
accelerations are measured at 140 places. In (b), the measured 
acceleration for a measurement point close to the right tip, near 
the missile connections, is shown. Black: output at the excited fre-
quencies, Red: odd nonlinear distortions, Blue: even nonlinear 
distortions, Green: disturbing noise level. These measurements 
show that the level of the nonlinear distortions is well above the 
disturbing noise level.

Authorized licensed use limited to: Guillaume Mercere. Downloaded on June 26,2020 at 13:21:14 UTC from IEEE Xplore.  Restrictions apply. 



50  IEEE CONTROL SYSTEMS MAGAZINE  »  june 2016

resulting in a stick/slip behavior (see Figure 17) [53]–[55]. 
The driving current of the shaker is used as an input, and the 
measured acceleration is the output of the system.

The amplitudes of the first- and third-order HOSIDFs 
are shown in Figure 18. As long as the system is in the 
stick phase, it behaves as a linear system with a large 
stiffness. Once the sledge starts to move, nonlinear dis-
tortions become visible in the measured acceleration, 
resulting in a large increase of the third-order HOSIDFs. 
This makes it possible to detect very clearly the transition 
from stick to slip for varying excitation conditions (fre-
quency and amplitude of the sine excitation). These 
results show that the HOSIDFs are a versatile tool provid-
ing intuitive insight in the behavior of a nonlinear system 
that is directly accessible for the design engineer. It com-
plements the multifrequency tests that were explained 
before in the section “Detection, Separation, and Charac-
terization of the Nonlinear Distortions and the Disturb-
ing Noise.”

Swept Sine Test
The swept sine test works well for mechanical systems with 
isolated resonance modes and the sensors positioned close to 
the nonlinear component. The system is excited with a swept 
sine (this is a sine with constant amplitude, and the frequency 
varies linearly with time), and the presence of nonlinear dis-
tortions is looked for either by [56]: 1) searching for anomalies 
in the envelope of the response, 2) by plotting the accelera-
tion against the relative displacement or relative velocity, or 
3) by making a time-frequency analysis using short-time 
Fourier transforms or a wavelet analysis. From these mea-
surements, it is also possible to make a first estimate of the 
function describing the local nonlinear component.

The sweep rate should be kept sufficiently low such that 
the structure gets enough time to built up the full reso-
nance power when passing through a resonance. If only the 
acceleration signal is used in the analysis, sharp resonances 
might be missed or strongly underestimated [57]. As a rule 
of thumb, the maximum sweep rate is proportional to .dB3

2
~  

This problem disappears when the FRF is estimated from 
the input–output measurements [58], although even in this 
case the sweep rate should remain low enough to have a 
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Figure 18  The magnitude and phase of the (a) first-order and (b) 
third-order HOSIDFs (higher-order sinusoidal input describing func-
tions) for the system shown in Figure 17 [53]–[55].
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Figure 17   An experimental setup to analyze stick/sliding in a 
linear bearing with friction [54].
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good frequency resolution. As mentioned before, the fre-
quency resolution is the inverse of the measurement time. 
An increasing sweep rate decreases the measurement time 
required to cover a given frequency band, and so the fre-
quency resolution drops. In some standards, for example, 
the standard for space engineering testing [59], the users 
are advised to use a logarithmic sweep rate between 2–4 
octaves/min, independent of the structure. It is clear that 
such a setting can become critical if the damping is too low.

These ideas are illustrated on the fighter measurements in 
Figure 19. A swept sine excitation, sweeping from 2 Hz to 
15 Hz with a constant sweep rate of 0.05 Hz/s, is applied to the 
wing. Figure 19(a) shows the measured acceleration of the 
wing tip against the instantaneously swept sine frequency. 
The resonances that were already visible in Figure 19 and also 
in Figure 30 (which will be discussed later) show up also in 
Figure 19. In the plot, the crossing of the instantaneous fre-
quency through the resonance at 7 Hz is highlighted in blue. 
Observe that this blue section is asymmetric, which is a strong 
indicator of the presence of a nonlinear resonance. This part of 
the signal is further analyzed in Figure 16(b), plotting the 
measured acceleration versus the relative displacement of two 
sensors put on the left and right side of the bolted connection. 
It is shown in [56] that such a plot gives a good indication of 
the shape of the local stiffness. A detailed description and 
illustration on an aerospace structure is given in [56]. The key 
idea is to discard all the inertia and force contributions that 
are not directly related to the nonlinear component, as they 
are generally unknown or not measured. In Figure 19(b) a 
softening spring behavior is observed (the acceleration is pro-
portional to the force). This will be later confirmed by the FRF 
measurements shown in Figure 30.

In Figure 20, a time-frequency analysis is made of the accel-
eration signal and plotted as a function of the instantaneous 
frequency (which replaces the time axis). The decreasing red 
line corresponds with the instantaneous swept sine frequency 
applied to the fighter. Some harmonic frequencies are visible at 
the integer multiples of this frequency. Also observe that, 
around the resonance frequency, the intensity and number of 
higher harmonics grows very fast. This points again to the 
presence of a strong nonlinear behavior in the resonances.

This analysis complements well the multisine method 
that was explained before. It is applicable whenever local 
nonlinearities are present, and it is possible to put sensors 
on both sides of the nonlinear structure.

System identification in the presence 
of nonlinear distortions: selection of 
a linear or nonlinear modeling approach?
Using the nonparametric test procedure described in ear-
lier sections, the user gets a clear view of the presence and  
behavior of the nonlinear distortions. The procedure is for-
malized in a set of user guidelines.

»» Design a random-phase multisine to detect the pres-
ence of nonlinear distortions following the guidelines 

of the multisine design section. To do so, the even fre-
quencies and a set of randomly selected odd frequen-
cies should be put to zero. The bandwidth, power 
spectrum, and peak amplitude should be similar to 
the signals that will be later on applied to the model. 
See [28] for a detailed discussion.
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Figure 19  A ground vibration test on the General Dynamics F16 
fighter (see Figure 16) using a swept sine excitation. The accelera-
tions on both sides of the bolted missile connection to the wing tip 
are measured. In (a), the measured acceleration is shown. In (b), 
the acceleration is plotted with respect to the relative displace-
ment between the two sensors.
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Figure 20   A time-frequency analysis of the measured accelera-
tion signal at the tip of the wing [56].
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»» Make a series of (steady-state) measurements with vary-
ing amplitudes or offsets of the excitation signal that 
cover the amplitude range of interest, and make the non-
linear analysis. More advanced signal processing meth-
ods can be used to remove transient effects [35], [36], [60].

»» If the nonlinear distortions are smaller than the spec-
ified level of accuracy of the model to be built, a linear 
design might be sufficient. This will lead to the BLA 
of the nonlinear system. Otherwise, a more involved 
nonlinear model will be needed. The BLA will be 
studied in detail later in this article.

»» Be aware that the BLA varies in general as a function 
of the power spectrum and amplitude distribution of 
the excitation signal. For that reason, the excitation 
signals during the experiments should match as well 
as possible the signals that will be applied later on to 
the model as explained in the first bullet above.

»» Detailed step-by-step instructions for a nonparamet-
ric nonlinear distortion analysis are given in [4, Sec. 
6.1], including a set of routines to prepare the experi-
ments and process the data.

Approximation of nonlinear  
systems: user choices
Once a nonparametric nonlinear distortion analysis is 
made, the user has to decide, on the basis of this informa-
tion, if a linear model will be sufficient to meet the modeling 
goals or if it is instead necessary to use a nonlinear model. 
To make this choice, it is important to understand the 
behavior of the linear-modeling framework in the presence 
of nonlinear distortions. Some of the theoretical properties 

that are obtained under the linear assumptions will no 
longer hold. For instance, when a linear model is estimated 
from a nonlinear system, the asymptotic properties of the 
linear model need to be verified. Likewise, the physical 
interpretation of the noise model should be modified. For 
a  formal mathematical framework, see “A Mathematical 
Framework for Nonlinear Systems.” Within this framework, 
it is possible to give a precise definition and interpretation 
of the BLA that will be identified under these settings.

Describing a system with a model that is too simple 
results in model errors. These model errors depend upon 
some choices that are implicitly or explicitly made by the 
user. To address these issues and to understand the results, 
it is necessary to line up the user choices that are present in 
each identification strategy. It is dangerous if the user is not 
aware of these choices or if their impact is not well under-
stood. The impact of the selected approximation criterion, 
the related convergence criterion, and the chosen excitation 
signal are discussed below.

Approximation Methods
The quality of the fit of a model to a system, or to the data 
that describe this system, can be expressed by defining a 
distance between the model and the data. This distance is 
called the approximation criterion or the cost function. The 
sum of the absolute or the squared errors are two popular 
choices. A first possibility to find an “optimal” approximat
ing model is to minimize the selected cost function with 
respect to the model parameters for the given data set. If 
the model can exactly describe a system and the data are 
free of measurement error, the choice of the approximation 
criterion is not so critical as long as it becomes zero with 
exact model parameters. The choice of the cost function 
that minimizes the impact of disturbing noise (the com-
bined effect of measurement noise and process noise), still 
assuming that the system is in the model set, is the topic of 
system identification theory. This section is focused on the 
alternative situation where the data is exact but the model 
is too simple to give an exact description of the system. This 
mismatch results in model errors, and the choice of the 
approximation criterion will significantly impact on the 
behavior of the resulting model errors. The ideas are pre-
sented by analyzing a simple example. In the right side of 
Figure 21, the atan function is approximated by a polyno-
mial ( ) .tan x a xa k

k
k
n

0.
=
/  The polynomial coefficients ak 

are obtained as the minimizers of the squared differences 
( ) ( ) ,tane x x a xan k

k
k
n

0
= -

=
/

	 ( ) ,argmina e xn
x D

2
a

=
!

t / � (5)

where the sum over x stands for the sum over all data 
points in the data set D.

Alternative approaches to obtain an approximating 
polynomial representation exist, for example, using a Taylor 
series approximation. In that case, no explicit cost function 

−2 0 2
−2

0

2

u
−2 0 2

u

−2 0 2
u

−2 0 2
u

A
ta

n 
T

ay
lo

r

10−20

100

1020

−2

0

2

A
ta

n 
Le

as
t 

S
qu

ar
es

10−20

100

1020

Figure 21   An illustration of the impact of the approximation crite-
rion on the approximation errors. A static nonlinear system (blue 
line) is approximated using two different approaches. That is, the 
comparison is between a Taylor series of order 1, 3, 5,7 ,9, 11 and a 
polynomial model of order 1, 3, 5, 7, 9, 11. The polynomial is fit using 
least squares. The errors are shown in the bottom figures. Observe 
that the Taylor series approximation gives a much better fit around 
the origin, but fails to converge for an input |u| > 1. The convergence 
of the least-squares fit on the right side is much slower, but the 
approximation converges everywhere on the interval [–3, 3].
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interpretation is made. The polynomial coefficients are cal-
culated from the values of the function’s derivatives at a 
single point, in this case x 0= . In the left side of Figure 21, 
the successive Taylor approximations are shown for grow-
ing orders n.

Both approximations are different from each other, and 
the model errors have a completely different behavior. 

While the Taylor approximation converges very fast around 
zero, it fails to converge outside the interval [–1, 1]. The 
least-squares approximation converges over the full inter-
val [–3, 3] but at a slower rate. The width of the interval can 
be made arbitrarily large.

In this article, the least-squares model fitting approach 
is followed.

A Mathematical Framework for Nonlinear Systems

The following provides some basic results of the Volterra the-

ory [18], without proof, to provide the reader with an intuitive 

insight into the behavior of nonlinear systems. The emphasis is 

on showing how a nonlinear system is shifting the input power 

from one frequency to the other. Three intermediate steps will 

be made: 

•	 from a one-dimensional impulse response (linear theory) to 

a multidimensional impulse response (nonlinear system)

•	 multidimensional frequency description of nonlinear systems: 

a tool for intuitive insight in nonlinear behavior [26], [S1]

•	 return to the physical world: collapsing the multidimen-

sional frequency description to a single dimension.

Using Volterra kernels as  

multidimensional impulse responses

A linear system is characterized by its impulse response g(t), 

and the input–output relation is given by the convolution integral

	
3

( ) ( ) ( ) .y t g u t d
0

x x x= -#

In the Volterra approach, the output of the nonlinear system is 

given by the sum of the contributions of increasing nonlinear 

degree a

	 ( ) ( ),y t y t
1

=
3

a

a=

/ � (S1)

with ( ) ( , , ) ( ) ( )y t g u t u t d
0 0

1 1 1f f f fx x x x x= - -
3 3a

a a a# #
.dxa  The kernel ( , , )g 1 fx xa a  is the multidimensional impulse 

response of degree .a

Multidimensional frequency  

response functions

The signal ( )y ta  in (S1) can be generalized to a multidimen-

sional time signal

  3 3

( , , )

( , , ) ( ) ( ) .

y t t

g u t u t d d

1

0 0
1 1 1 1

f

f f f fx x x x x x= - -

a
a

a a a a a# #

The original signal is retrieved by putting .t t t1 = = =ag  The mul-

tidimensional representation in the frequency domain becomes

	 ( , , ) ( , , ) ( ) ( ),Y G U U1 1 1f f f~ ~ ~ ~ ~ ~=a
a

a
a a � (S2)

with ( , , )G 1 f~ ~a
a  the multidimensional Fourier transform of 

( , , ) .g 1 fx xa a  This multidimensional representation in the fre-

quency domain is very similar to the result for the linear case. 

The output spectrum is obtained as the (multidimensional) 

product of the transfer function with the input.

From a multidimensional to  

a one-dimensional frequency variable

The one-dimensional spectrum ( )Y ~a  is retrieved by 

looking for all frequency combinations , , ,1 f~ ~a  such 

that .1 g~ ~ ~+ + =a  These are retrieved by ( )Y ~ =a

( , , , ) .Y d d1 1 1 1 1 1f f g f~ ~ ~ ~ ~ ~ ~- + +
3

3

3

3 a
a a a

- -
- - -# #  Ob-

serve that this is a generalization of the response of a nonlin-

ear system to a sinusoid.

Measuring the Volterra kernels

Although the Volterra representation is an attractive nonparametric 

description of a general class of nonlinear systems, there are only 

a few methods described in the literature to measure the Volterra 

kernels, with most of them focusing on systems with short mem-

ories. The major reason for this lack of interest is the exploding 

number of parameters to be identified due to the multidimensional 

nature of the kernels. A first possibility is to use higher-order corre-

lation methods [18], often combined with an orthogonal represen-

tation of the Volterra series, for example, using a Wiener represen-

tation. Methods were presented to avoid the long correlation times 

that are needed by the use of well-designed excitation signals 

[S4]. The basic idea is to generate a multisine where the active 

frequencies are selected such that the harmonic interference of 

the kernels of different degree is eliminated up to a given degree 

(for example, degree four). The design of such “no interharmonic 

distortion” signals (NID-signals) is discussed in detail in [S2] and 

[S3]. Methods to measure the multivariate FRF that make use of 

such signals are discussed, for example, in [S4] and [S5].
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Convergence Criteria
In the previous example, a polynomial approximation of 
the atan(x) function is made. Using the least-squares cost 
function, the error can made arbitrarily small in a given 
interval by increasing the complexity of the model. In 
Figure 22, a discontinuous function is approximated using 
polynomials of different degrees. Again, it can be seen that 
the error can be made arbitrarily small for all inputs, except 
at the discontinuity at u = 0 where the error converges to 
half the discontinuity. This prohibits uniform convergence 
that is characterized by a decrease of the maximum error in 
the interval. More formally, for all ,f  there exists a value N 
such that | ( )| .e x n Nsup forx D n 1 2f!

To include also discontinuous functions in the frame-
work, the convergence criterion should be weakened to 
point-wise convergence, which can be obtained by using 
the convergence in the mean-square sense. Mean-square 
convergence requires that

	 ( ) ,e x 0lim
n n

x D

2 =
"3

!

/

which guarantees that the approximation converges every-
where excepted for some isolated points where the function 
is discontinuous. For continuous functions, uniform con-
vergence is retrieved. It is clear that this concept matches 
very well with the least-squares model-fitting approach. In 
this article, mean-square convergence will be used.

Impact of the Choice of the Excitation Signal
The actual fit of the model, in the absence of model errors 
and noise-free data, will not depend on the characteristics 

of the excitation signal. This changes drastically when the 
model is not rich enough to capture the full system behav-
ior. In that case, errors will be present, and during the fit 
these will be pushed to those parts of the input domain that 
are not so well excited because that reduces the cost in (5). 
This makes the results dependent on the choice of the exci-
tation, which is illustrated in Figure 23 where atan(u) is lin-
early approximated using the model y = au. Figure 23 shows 
that the BLA depends on the amplitude distribution of the 
excitation signal. In Figure 23, the results for a Gaussian, 
uniform, and sine excitation [see Figure 23(c)] are shown in 
(c), and the histogram for each of the excitation signals is 
shown (b). Since most of the probability mass of a Gaussian 
distribution is around the origin (see the Gaussian histo-
gram), the Gaussian excitation results in the best fit in that 
subdomain. A sine excites mostly the extreme values (see 
the histogram of the sine excitation), and it results in a fit 
that better approximates the nonlinear function for these 
extreme values. This comes at a cost of larger approxima-
tion errors around the origin. The behavior of the uniform 
distribution is in between these two extreme distributions, 
and this is also true for the corresponding fit (blue line).

This example shows that the experiment design in the 
presence of model errors will be even more important than 
in classical system identification where no model errors are 
considered. If the user is aware that model errors will be 
present, care should be taken that at least a part of the 
experiment consists of signals that mimic very well the sig-
nals that will be applied later on to the model. The remain-
ing part of the experiment can be used to obtain a sufficiently 
rich excitation so that the uncertainty remains small enough. 
Such an approach is illustrated on the identification of an 
industrial clutch in [61]. To identify the BLA for a nonlinear 
dynamic system, not only is the power spectrum of the exci-
tation important (to cover the frequency band of interest), 
but also the amplitude distribution plays a crucial role (to 
excite those amplitude regions that will be used in later 
applications). In [61], a mixture of random-phase multisines 
and impulsive excitations is used to cover the later use of 
the model.

A new paradigm: replacing the  
nonlinear system by a linear system  
plus a noise source
In the previous section, the impact of some user choices (app
roximation method, convergence criteria, and excitation signal) 

Since the cost of a nonlinear approach is significantly higher, additional 

information is needed to guarantee that there will be sufficient return on the 

additional needed investments of time, money, and human resources
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Figure 22  The least-squares approximation of a discontinuous 
function with continuous basis functions.
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on the behavior of model errors is discussed. In this sec-
tion, these results are used to approximate a nonlinear 
system with a linear model. First, the user choices are 
specified. Next, the BLA will be introduced, and the prop-
erties of the model errors are discussed. This leads eventu-
ally to a new paradigm to deal with nonlinear systems in a 
linear setting.

User Choices
Since the approximation of a nonlinear system by a linear 
model creates model errors, the user choices that were dis-
cussed before should be carefully made. As explained 
before, the linear approximation is tuned by minimizing the 
mean-square error between the measured and modeled 
output. As a direct result, the output error will be uncorre-
lated with input. The excitation will be restricted to random 
signals with a Gaussian distribution. These include filtered 
Gaussian noise and random-phase multisines (2) with a suffi-
ciently large number of components (in practice F > 10 works 
in many applications).

The Best Linear Approximation GBLA

The linear system that fits best the data is called the BLA, 
represented either by its impulse response ( ),tGBLA  or its FRF, 
( ) .G ~  More formally, GBLA  is defined as [3], [28], [62]–[65]

          ,argminG q E y t G q u t0
2

BLA
G

= -^ ^ ^ ^h h h h" ,           (6)

where q is the shift operator for a discrete-time model. Sim-
ilar expressions can be given for continuous-time models. 
All expected values {}E  in this article are taken with respect 
to the random input ( )u t . In most applications, the dc value 
of the input and output signal should be removed to obtain 
a model that is valid around a given setpoint. A more 
detailed analysis is given in “The Best Linear Approxima-
tion of a Volterra System.”

A Nonlinear Noise: Source
The difference between the output of the nonlinear system  
and that of the BLA ( ) ( ) ( ) ( )y t y t G q u ts BLA= -  is called the sto-
chastic nonlinear contribution or nonlinear noise. Although 
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Figure 23  The best linear approximation (BLA) of a static nonlinear system (the black line in the right figure) depends on the amplitude 
distribution of the excitation signal. The BLA for a Gaussian (red), uniform (blue), and sine (green) excitation [in (a)] are shown. The 
histogram (for 1024 samples) for each of the excitation signals is shown in (b). Since most of the probability mass of a Gaussian distribu-
tion is around the origin (see the Gaussian histogram), the Gaussian excitation results in the best fit in that domain. A sine excites mostly 
the extreme values (see the histogram of the sine excitation), and it results in a fit that better approximates the nonlinear function for 
these extreme values. This comes at a cost of larger approximation errors around the origin. The behavior of the uniform distribution is 
in between these two extreme distributions, and this is also true for the corresponding fit (the blue line).
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this name might be misleading (the error is deterministic for 
a given input signal), it is still preferred to call it a stochastic 
contribution because it looks very similar to a noise distur-
bance for a random excitation [3], [4], [66], [67].

A New Paradigm
By combining these results, the output of a nonlinear 
system that is driven by a random excitation (or a Riemann-
equivalent signal [28]) is split in two classes of contribu-
tions, being the coherent contributions YBLA and the 
noncoherent contributions YS (see Figure 24). The linear 
part of the system contributes to the coherent output only, 
while the nonlinear distortions contribute to both the 
coherent and noncoherent output.

Nonlinear System
y0

y0

yS

yBLA
GBLA

u

u
+

Figure 24  A new paradigm: the nonlinear system (the top figure) 
is replaced by the best linear approximation GBLA plus an error 
term yS(t) (the bottom figure).

The Best Linear Approximation of a Volterra System

In this sidebar, an explicit expression is given for the best linear 

approximation (BLA) for a Volterra kernel of degree .a  The 

multidimensional output is given in (S2). For a multisine excita-

tion, the contributions at a given frequency k are retrieved by 

looking for all frequency combinations such that ,k kii 1
=

a

=
/  

with ki an excited frequency; see also (1). These multivariate 

output contributions are given by

  ( , , , ) ( , , , ) ( ) ( ) ( ),Y k k k G k k k U k U k U k1 2 1 2 1 2f f f=a
a

a a � (S3)

for a kernel of degree .a  Among these, only the contributions 

for which

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),U k U k U k U k U k U k U k U k1 2 1 2f f- =a a
r � (S4)

(where the overbar denotes the complex conjugate) do not de-

pend on the input phases U+  will contribute to the BLA. If this 

product would still depend on the random phases of the input, its 

expected value over multiple realizations would be zero because, 

by definition, for a random-phase multisine { }E e 0j ={  and the 

phases of a random-phase multisine are independent over the 

frequency. So it should be possible to write (S4) as a real number, 

which can only be done if all the components U in this product can 

be combined in pairs of complex-conjugated inputs, for example 

( ) ( ) ( ) ,U k U k U ki i i
2- =  such that the input phases are cancelled.

From this result, it can be seen that only kernels with an odd 

degree a can contribute. For the odd kernels, the contribution 

of degree 2 1a b= +  to YBLA(k) is

 
( )

( , , , , , ) | ( ) | | ( ) | ( ),

Y k C

G k k k k k U k U k U k

, , , , ,
k

k k k k k
k

1 1 1
2 2

BLA
1

1 1

$

f

f f

=

- -

f

a b b b

- -b b

b

/ /

where the sum runs over all frequencies that are excited. The 

constant C , , , , ,k k k k k1 1 f- -b b  accounts for the number of all possible 

frequency combinations that are obtained by changing the po-

sition of the frequencies in ( , , , , , ) .G k k k k k1 1 f- -a b b

Example: a Wiener–Hammerstein system

Consider the Wiener–Hammerstein system in Figure S1 ex-

cited by a random-phase multisine with F excited frequen-

cies. For a static nonlinearity f = x3, the multivariate output 

(S3) becomes

	 ( , , ) ( , , ) ( ) ( ) ( ) .Y k k k G k k k U k U k U k1 2 3 1 2 3 1 2 3= a

For the Wiener–Hammerstein system, this reduces further to

( , , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

Y k k k S k k k R k R k R k

U k U k U k
1 2 3 1 2 3 1 2 3

1 2 3$

= + +

The contributions YBLA(k) are then given by looking for all 

combinations k k k k1 2 3= + +  that depend only on the phase 

of U(k)

	 ( ) ( ) ( ) ( ) | ( ) | | ( ) | ,Y k U k S k R k S l U l E6
l

F

Y
1

2 2
BLA #= -

=

/

with ( ) ( ) | ( ) | | ( ) | ( )E S k R k S k U k U k3Y
2 2=  a correction term 

because for l = k, only three permutations are possible instead 

of six [S6].

The stochastic nonlinear contributions YS(k) are given by 

all other terms where condition (S4) does not hold, for exam-

ple, the contribution ( ) ( ) ( )S k R k R k1 2- - - ( ) ( )R k U k3 1+ -

( ) ( ) .U k U k2 3- - +

Reference
[S6] C. Evans and D. Rees, “Nonlinear distortions and multisine signals— 
Part I: Measuring the best linear approximation,” IEEE Trans. Instrum. 
Meas., vol. 49, no. 3, pp. 602–609, 2000.  

yu
R Sf

Figure S1  A Wiener–Hammerstein system. A static nonlinear 
system f is sandwiched between the linear dynamic systems R, S.
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»» Coherent output: The relation between the input U0(k) 
and the coherent (non)linear contributions YBLA(k) is

	 ( ) ( ) ( ) ( ),Y k G k U k T kBLA BLA= +

where T(k) models the transient effects and leakage 
errors [3], [68]. From now on it is assumed, without 
loss of generality, that steady-state conditions apply, 
such that the transient terms can be neglected in 
what follows. The transfer function ( )G kBLA  depends 
on the power spectrum of the Gaussian random exci-
tation. Changing the Gaussian distribution to an 
alternative such as a uniform distribution can change 
the BLA. From a spectral point of view, the phase of 
YBLA(k) is equal to the phase of the input plus the 
phase of the transfer function ( ) .G kBLA  Since GBLA  is 
an expected value over the random input, its actual 
value will not depend upon the actual realization of 
the random input.

»» Noncoherent output: The noncoherent output yS 
accounts for the difference between the output of the 
BLA and the actual nonlinear output. For random 
excitations, it is very difficult for an untrained user to 
distinguish the nonlinear noise y tS ^ h from the addi-
tive disturbing output noise ( )v t  (Figure 24). The 
nonlinear noise ( )tyS  is uncorrelated with ( )u t  
because they are the residuals of the solution of a 
least-squares problem. However, ( )u t  and y tS ^ h are 
mutually dependent since there exists a nonlinear 
relation between both signals, namely

	 ( ) .y t y t G q u tS 0 BLA= -^ ^ ^h h h

Combining both results, the noise-free output ( )ty0  can be 
written as the sum ( ) ( )y t y tSBLA +  (see Figure 24) [3], [66], [67]

	
( ) ( ) ( ),

.
y t y t v t

y t G q u t y tS

0

0 BLA

= +

= +^ ^ ^ ^h h h h � (7)

In the frequency domain the relation between the FFT 
spectra becomes

	 ,
Y k Y k V k

G k U k Y k V kS

0

BLA

= +

= + +

^ ^

^

^

^ ^ ^

h h

h

h

h h h � (8)

disregarding again the transients ( )T k  representing the ini-
tial transients and leakage errors. The phase of YS(k) will 
depend upon the phase of the input U(l), for some values 
l k! . This was not so for YBLA(k), whose phase depends 
only on the input phase ( )U k+ . Since the phases are sto-
chastic variables, YS(k) will also be a stochastic value with 
respect to the random input.

The power spectra of YS and V can be measured using 
the nonparametric nonlinear detection methods that were 
explained before. In [69] a rationale is given that shows that 

the level of the stochastic nonlinearities (noncoherent 
output) is also a good indicator for the level of the nonlin-
ear coherent output for the considered class of excitations 
(random-phase multisines and Gaussian noise).

For the specified user choices (mean-square error 
and random Gaussian excitation), the asymptotic prop-
erties of GBLA  and Ys are well known, assuming that the 
number of frequencies N in the multisine (2) grows to 
infinity. A detailed discussion is given in [3, Sec. 3.4]; 
here only a brief summary of the most important prop-
erties is given.

The BLA GBLA  is shown to be smooth; it does not 
depend on N, and it is the same for all Riemann-equiva-
lent excitations. Only the odd nonlinearities contribute 
to GBLA .

The stochastic nonlinearities YS have a smooth power 
spectrum. They are zero-mean circular complex normally 
distributed, and they have the same power spectrum for all 
Riemann-equivalent excitations. Both the even and the odd 
nonlinearities contribute to YS.

A Toy Example
Consider a static nonlinear system

	 .y a uk
k

n
k

1
=

=

/

For (filtered) Gaussian noise excitations, it is known 
from Bussgang’s theorem [65], that the BLA is also static 

.y a uBLA BLA=  The least-squares estimate is

	
( )

( ) ( )
,a

u t
y t u t

2BLA =t /
/
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Figure 25   An illustration of the dependency of the best linear 
approximation (BLA) of a static nonlinear system on the distribu-
tion of the excitation signal. Results are shown for a (filtered) uni-
form and a (filtered) Gaussian excitation on a normalized frequency 
axis, with f the frequency, and fs the sample frequency. The ampli-
tude and phase of the estimated GBLA

t  are shown for the following 
noise filters: blue: white noise and black: ( ) ( ) . ( ),u t e t e t0 5 1= + -  
red: ( ) . ( ) ( ) .u t e t e t0 5 1= + -
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which converges for large data sets to

	 / ,a ak
k

n

k
1

1 2BLA n n=
=

+/

with na  the moment of order .a  This simple example 
shows that the BLA depends on the higher-order moments 
of the excitation. Observe that this result depends only on 
the amplitude of the Gaussian noise (all higher-order 
moments of a zero-mean Gaussian distribution are set by 
its variance), and not on its power spectrum. For zero-
mean excitations, only the odd degrees will contribute to 
the estimate.

This result changes when the excitation is no longer 
Gaussian distributed. A nice illustration is given in [4, Ex. 
83.b], taken from [62]. The BLA of a cubic static nonlinear 
system y = u3 is estimated for six different situations: u is 
zero-mean white Gaussian or uniformly distributed noise, 
( ) ( ) . ( ),u t e t e t0 5 1= + -  or ( ) . ( ) ( ),u t e t e t0 5 1= + -  with e(t) 

being zero-mean white Gaussian or uniformly distributed 
noise. The resulting FRF of the BLA is given in Figure 25. 
From the figures on the right, it is seen that for Gaussian 
noise GBLA  has a constant amplitude and phase that corre-
sponds to a static system. In the figures on the left, the excita-
tion is generated starting from a uniformly distributed noise 
generator. For white noise, GBLA  is still a constant. However, 
for the filtered uniform noise, a frequency-dependent FRF  
is retrieved that depends on the actual filter that is applied. 
In this example, short filters were used. If the impulse 
response becomes longer, the distribution of the filtered 
signal will converge to a Gaussian distribution and the 
dependency on the distribution of e will disappear [32]. 
This allows well-selected pseudorandom binary excitations 
to be used in many practical applications to measure GBLA  
[33]. Since in some industrial applications, binary excita-
tions are the only feasible excitation (for example, opening 
or closing a valve), this might become an attractive pra
ctical extension.

Nonparametric identification  
of the best linear approximation
In this section, we explain how to measure the FRF of 
the BLA. An optimal strategy (choice excitation signals 
and reduction of the impact of the nonlinear distortions) 
to obtain the best FRF measurement within a given time 
is proposed. First, the error sources in the GBLA  mea-
surement will be discussed, and it will be shown how  
to reduce them. Next, experimental illustrations will  
be shown.

It is shown [70] that all the results for nonparametric 
FRF measurements, developed for the linear framework, 
hold also for the nonlinear situation

	 ( )
( )
( )

,G k
S k
S k
UU

YU
BLA =t

t

t

and

	 ( )
( )

( )
,k

S k
k

G
UU

2
2
disturbances

BLAv
v

= t � (9)

with ( )S kUU
t  and ( )S kYU

t  the sample auto and cross-power 
spectrum obtained from the finite set of repeated measure-
ments. In Figure 26, it can be seen that there are three 
contributions to the noise variance that show up in the 
numerator of the variance expression

    ( )
( )

( ) ( ) ( ) ( )
,k

S k
k

S
k k k

G
UU UU

YL Y YS2
2 2 2 2
disturbances

BLAv
v v v v

= =
+ +

t t � (10)

with , ,YL Y YS
2 2 2v v v  being, respectively, the variance of the 

leakage error, the disturbing noise, and the stochastic non-
linearities. In the next section, it will be shown how these 
different contributions to the variance can be reduced to 
minimize the variance.

Reduction of the Errors on the FRF  
in the Presence of Nonlinear Distortions
Two possibilities to reduce the variance (9) on the FRF mea-
surement of GBLA  are discussed. The first one is to avoid 
dips in the power spectrum estimate SUU

t  of the input. 
These (very) small values of ( )S kUU

t  result in a much higher 
noise sensitivity since ( )S kUU

t  is in the denominator of (9). 
The second possibility is to reduce the variance ( )k2

disturbancesv  
as much as possible. Both possibilities are discussed below.

Avoiding Dips in the Observed Input  
Power Spectrum SUU

t

The observed power spectrum ( ) ( / ) ( ) ,S k U kP1 [ ]
UU

l
l
P

1

2
=

=
t /  

obtained from P realizations of the random input, can be 
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Figure 26  Error sources in a frequency response function (FRF) 
measurement: leakage error with standard deviation YLv , disturbing 
noise (process noise, measurement noise, and environmental noise) 
with standard deviation ,Yv  and the nonlinear noise source (stochas-
tic nonlinear contributions) with standard deviation .YSv  The variance 
of the FRF at frequency fk is ( ) ( ( ) ( ) ( )) / .k k k k SG YL Y YS UU

2 2 2 2
BLAv v v v= + +
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significantly different from the power spectrum ( ),S kU U0 0  
especially for small values of P. This can be seen in  
Figure 27. For small values of P, large dips can be observed 
with a loss of 20 dB or more. To reduce the loss to 1 dB 
(10%) with a probability of 95%, at least P 64=  realiza-
tions should be averaged (see [3, Table 2-1 p. 58]). For that 
reason, it is better to avoid random excitations if possible, 
and use, for example, random-phase multisines (see 
Figure 10) that do not face this problem.

Reducing the Noise Contributions
The reduction of the three noise contributions in (10) is dis-
cussed below.

»» Disturbing noise ( )kY
2v : The only possibility to reduce 

the disturbing noise level is to be careful during the 
measurement setup. Using shielded cables, low-noise 
signal conditioners, reducing the environmental 
noise, for example, can all contribute to keep the dis-
turbing noise as small as possible.

»» Leakage errors ( ):kYL
2v  A random-phase multisine also 

eliminates the leakage errors in the FFT-processing 
of the results, so that .0YLv =  This is a second reason 
why the use of random-phase multisines is strongly 
advocated.

»» Nonlinear noise source ( ):kY
2
Sv  Although nonlinear dis-

tortions are intrinsically linked with a nonlinear 
system, it is still possible to partially eliminate their 
impact on the FRF measurement by using an odd exci-
tation. This can be either a random noise source with a 
symmetric amplitude distribution (for example, zero-
mean Gaussian noise) or a well-designed multisine. 
An odd multisine does excite only the odd frequen-
cies, and the FRF is only measured at those frequen-
cies. Keep in mind that this doubles the required 
measurement time for a given frequency resolution 
because the even frequencies cannot be used in that 
case for the FRF measurement, so that one frequency 
out of two is not in use. However, this comes with the 
advantage that the even nonlinear distortions are no 
longer influencing the odd frequencies, as explained 
in the section on nonlinear distortions detection. For 
systems with dominating even nonlinearities, a large 
reduction of the nonlinear noise variance on the FRF 
measurement will be obtained.

Experimental Illustration of the Noise Reduction
The huge gain that can be obtained by following the above 
guidelines for excitation signal design are illustrated on a 
hair dryer setup. The current that is driving the heating 

element is shaped with the excitation signal around a 
given setpoint using a thyristor. The firing angle was 
selected such that dominating even nonlinearities show 
up in the thyristor characteristic. Three different classes of 
Riemann-equivalent excitation signals were designed. The 
total available measurement time was the same for each of 
these signals. Care was taken so that the frequency resolu-
tion of the FRF measurement was equal for all the excita-
tions (an odd multisine has only half the frequency 
resolution of a full multisine that excites all the frequen-
cies). The results are shown in Figure 28. The FRF for the 
three classes of excitations coincide well, as is expected for 
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Figure 28   An illustration of the noise reduction in the frequency 
response function (FRF) measurement of GBLA on a hot-air device. 
The FRF of the best linear approximation is measured using 
random noise excitations, a multisine that excites all frequencies, 
and two multisines that excite only the odd frequencies. The blue 
lines show the measured FRF, and the red lines show the stand-
ard deviation.

Due to the presence of a feedback loop, the nonlinear distortions  

at the output of the system will also influence the input.
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Authorized licensed use limited to: Guillaume Mercere. Downloaded on June 26,2020 at 13:21:14 UTC from IEEE Xplore.  Restrictions apply. 



60  IEEE CONTROL SYSTEMS MAGAZINE  »  june 2016

Riemann-equivalent signals [28]. However, the standard 
deviations are very different. The random noise excitation 
is the worst; this is due to the presence of dips in the input 
power spectrum. By using a multisine, the dips are eli
minated, and this results in a reduced standard deviation. 
However, the best results are obtained by the odd multi-
sines because these eliminate completely the impact of the 
(dominant) even nonlinear distortions and reduce the 
standard deviation even more. Using an odd multisine 
excitation eventually reduces the standard deviation 
almost 20 dB (factor ten) with respect to the random exci-
tation. Such a reduction corresponds to a reduction in 
measurement time of a factor 100.

User Guidelines
»» All the nonparametric expressions of the linear 
theory can be used to measure the FRF of the BLA. So 
there is no need to change the measurement equip-
ment to deal with the nonlinear situation.

»» Use odd random-phase multisine excitations, de
signed following the guidelines of the section on 
nonlinear detection, to measure the FRF ( )G kBLA

t  and 
its variance ( ) .kG

2vt

»» Averaging over multiple realizations reduces the 
impact of the disturbing noise and the stochastic 
nonlinearities YS. It results in a smoother estimate. 
However, it does not reduce the systematic contribu-
tions of  the nonlinear distortions to the BLA. The 
latter cannot be reduced using averaging techniques: 
averaging smooths the result, but the nonlinear 
dependency of GBLA  on the input characteristics will 
not be reduced.

»» Use the available measurement time to maximize the 
number of realizations of the random-phase multisine 
by keeping the number of repeated periods P per real-

ization small (for example, P 3= ). This advice can be 
refined, depending on the prior knowledge of the 
user: 1)  No prior knowledge available: select P 2= , 
and M as large as possible. 2) Maximize the nonlinear 
detection ability: M 2= , and P as large as possible. 3) 
If it is known that the nonlinear distortions dominate: 
P 1= , and M as large as possible (the disturbing noise 
level will not be estimated in this case). If even nonlin-
earities dominate: use an odd multisine, exciting only 
the odd frequencies in the frequency band of interest. 
If odd nonlinearities dominate: use a full multisine, excit-
ing all frequencies in the frequency band of interest.

»» A generalization to the measurement of the BLA of a 
MIMO system is discussed in [71].

FRF Measurement of the Best Linear  
Approximation: Experimental Illustrations
The measurement of the FRF of the BLA is illustrated on a 
lab scale (the forced Duffing oscillator) and on two real-life 
examples: 1) a ground vibration test on a fighter jet and 2) a 
MIMO measurement on an industrial robot.

The Forced Duffing Oscillator
In this example, the measurements on the forced Duffing 
oscillator, which are discussed earlier, are further pro-
cessed. The FRF is measured for four different excitation 
levels and shown in Figure 29. The FRF is averaged over 50 
realizations of the input signal to obtain a smoother result. 
Observe that the resonance frequency shifts to the right for 
increasing excitation levels and that the measurements 
become noisier. Both effects are completely due to the non-
linear distortions. The level of the distortions that corre-
sponds to these measurements can be seen in Figure 13.

Ground Vibration Test on a Fighter Jet
In the second example, the measurements of the ground 
vibration test, which was discussed earlier, are processed. 
In this example, some additional signal processing was 
done to provide additional information. This leads to an 
alternative method to detect and analyze the presence of 
nonlinear distortions, called the robust method [3], [4], 
[72]. First, for each realization, the FRF is averaged over 
the successive periods. This provides not only an aver-
aged FRF, it gives also an estimate of the disturbing noise 
variance ( )kY

2v  as a function of the frequency. This esti-
mate is not affected by the nonlinear distortions because 
these do not vary over the periods. Next, the FRFs and 
variance estimates are further averaged over the realiza-
tions, and again the variance is calculated. This results in 
a reduction of the impact of the stochastic nonlinearities 
on the FRF measurement, it also allows the variance of 
disturbing noise plus the stochastic nonlinearities 

( ) ( )k kY Y
2 2

Sv v+  to be estimated. This value, called the total 
variance, is shown in Figure 30(a), together with the 
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Figure 29  The measured frequency response function of a reso-
nating system with a hardening spring. The resonance frequency 
shifts to the right for an increasing excitation level. This is the typical 
behavior for a hardening spring. The shift is due to the systematic 
nonlinear contributions, which create a shift in the dynamics of the 
best linear approximation. The apparent noisy behavior, induced by 
the stochastic nonlinearities, grows with the excitation level.
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amplitude of the output. Since the total variance Y Y
2 2

Sv v+  
is much larger than the noise variance ( ),kY

2v  it follows 
that it is also an excellent measurement of the nonlinear 
distortion level in this case.

This nonlinear analysis method is an alternative 
approach to measure the level of the nonlinear distortions 
and the noise. Its major advantage is that no detection lines 
are imposed on the excitation. This not only increases the 
resolution of the measurement (the even lines are also used 
to measure the FRF), but it also relaxes the constraints on 
the input signal because it is no longer necessary to impose 
the zero lines. Nonlinear actuators are no longer a problem. 
Thus, this method is also called the robust method. The 
major disadvantage is that it is no longer possible to make a 
distinction between the even and the odd nonlinearities.

The FRF of GBLA  is shown in Figure 30(b). Again, it can 
be observed that it varies with the excitation level. This 
time the resonance is shifting to the left, which corresponds 
to a softening stiffness and is in agreement with the fact 
that, in this case, the nonlinearities are due to a bolted con-
nection between the wing tip and the missile.

Multiple-Input, Multiple-Output FRF Measurements  
on an Industrial Robot
In this example, the MIMO FRF of an industrial robot with six 
degrees of freedom is measured (see Figure 31) [73]. The figure 
shows a selected set of the measured FRFs between three 
motor torques and three motor accelerations. When designing 
excitations for MIMO measurements, additional design 
aspects come into the scope besides those that were already 
discussed before. In a MIMO FRF measurement, a set of linear 
equations with a dimension n nu u#  (nu is the number of 
inputs) should be solved. The condition number of this matrix 
affects very strongly the noise sensitivity. Using orthogonal 
multisine excitations [36], [71], it is possible to obtain a condi-
tion number equal to one, while at the same time it is still 
possible to make the nonlinear distortion analysis. In this 
case, the total variance and the noise variance are shown. 
Using these signals resulted in a significant improvement of 
the FRF measurements. The settings for these MIMO mea-
surements are as follows. The measurements are averaged 
over nine realizations of an odd random-phase multisine. 
From each realization, a set of n 6u =  orthogonal multisines is 
created and is used as the input for a single MIMO experi-
ment. P 2=  periods are measured in steady state for each 
realization. The period length of the random-phase multisine 
is 10 s, and 195 odd frequencies are excited in the frequency 
band from 1 to 40 Hz. The sample frequency was f 2 kHzs = . 
More information can be found in [73] and [74].

Parametric identification of  
the best linear approximation
In many applications, a parametric transfer function model 
or state-space representation of the system is needed, 
together with an estimate of the model uncertainty.

Plant Model Estimation
Starting from ( )G kBLA

t  and ( ),kG
2vt  it is possible to obtain 

such a parametric model by minimizing the following 
weighted least-squares cost function that comes from the 
linear system identification theory [3], [66]
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where Ωk is the continuous or discrete-time frequency vari-
able. It can be shown that the minimizer ( , )G k iX t  of the cost 
function (11) is a consistent estimator for GBLA  (the estimate 
converges to the exact value as the number of data points 
tends to infinity) if the BLA is in the model set.

5 10 15

–100

–50

0

Frequency (Hz)

(a)

Frequency (Hz)

(b)

F
R

F
 (

dB
)

F
R

F
 (

dB
)

7 8 9

–50

–40

–30

–20

–10

Figure 30  The measured frequency response function (FRF) of 
GBLA of the F16-fighter (see Figure 16) at small (grey line) and 
medium (black line) excitation levels. A specific challenge encoun-
tered with fighter aircraft is the modeling of the wing-to-payload 
mounting interfaces [for example, the missile on the tip of the wing 
in Figure 16(a)]. For large amplitudes of vibration, friction and gaps 
may be triggered in these connections, resulting in nonlinear 
behavior. Part (b) shows a zoom around 7 Hz of the measure-
ments shown in (a). The levels of the total variance (red) and the 
disturbing noise (green) are given. Observe that the resonance 
frequency shifts to the left for an increasing excitation level. This 
corresponds to a softening spring. This behavior originates from 
the bolted connections mentioned before. In (a), it is shown that 
the nonlinearities are largest around the resonance frequencies, 
and they are well above the disturbing noise level.
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An alternative is to use the results of the prediction error 
framework [1]–[3]. In that case, a parametric model is used

	 , ,k HY k
2 2v m iX=t ^ ^h h

and the cost function is formulated directly on the input 
output data leading to

	 ( ( , ) ( ( ) ( , ) ( )) .V N H q y t G q u t1
pe

t

N
1

1

2i i i= --

=

^ h /

In the general problem, the plant and noise model 
parameters are estimated. The reader is referred to [1] and 
[2] to learn how to choose the plant and noise model struc-
ture. In the motivational example, a Box–Jenkins model 
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Figure 31  The nonparametric analysis of an industrial robot  (a) with six degrees of freedom using orthogonal multisine excitations. The 
multiple-input, multiple-output frequency response function (FRF) for the six degrees of freedom is measured. The FRFs between three 
motor torques and three motor accelerations are shown in (b). Blue line: frequency response function, red line: level of the total variance 
(nonlinear distortions + disturbing noise), and green line: level of the disturbing noise. The nonlinear distortions dominate, and the red 
line is everywhere well above the green line [73], [74].
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structure was used. In that case, the plant and noise model 
have no common parameters. A simplified approach would 
be to put the noise model ( , ) .H q 1i =  Under open-loop con-
ditions, this will still lead to consistent estimates for ,GBLA  
provided that GBLA  is in the model set. However, no infor-
mation on the distortion levels will be available, and the 
uncertainty on the estimated plant model will be larger. 
Under closed-loop conditions, the estimate will become 
also biased.

Variance Estimate of the Plant Model
The linear system identification theory also provides a theo-
retical estimate of the variance of the estimated model, start-
ing from the assumption that the disturbing noise is 
independent of the excitation signal u(t). This assumption 
does not hold for ys(t). As mentioned before, the stochastic 
nonlinearity is uncorrelated with the input but still depen-
dent on it. A detailed study shows that this dependency 
between the input and the nonlinear distortions will lead to a 
much higher variance than what is predicted by the linear 
theory [75].

The worst-case situation occurs for a static nonlinear system 
y un= , as was studied in the toy example of the previous sec-
tion. In that case, an analytical analysis can be made for a zero-
mean white Gaussian noise excitation. The BLA y a uBLA=  
was given by / .a n 1 2BLA n n= +  The ratio between the actual 
variance a

2
BLAv  that will be observed by repeated experiments, 

and the variance a
2

,BLA indv  that is obtained from the linear iden-
tification theory assuming independent noise, is

	 .n2 1
a

a
2

2

,BLA ind

BLA

v

v
= +

This shows that the underestimation of the variance by the 
linear framework grows linearly with the nonlinear degree 
n. This leads to far too optimistic uncertainty bounds; 
underestimation of the actual variance with a factor seven 
(about 8 dB) or more occurs.

In Figure 32, the underestimation effect is shown on the 
identification of a Wiener–Hammerstein system. Such a 
system consists of the cascade of a linear dynamic system, 
a static nonlinear system, and a linear dynamic system. It 
can be shown, for Gaussian excitations,

	 ( ) ( ) ( ),G k G k G k1 2BLA a=

with G1, G2 the transfer functions of the first and second linear 
system, and a  a constant that depends on the nonlinear system 
and the properties of the excitation signal. From Figure 32,  
it can be seen that the actual observed error level in the  
simulations sima  is significantly larger than the expected level 

thv  from the linear system identification theory.
The experimental results shown in Figure 4 are similar 

in that the actual variance is about 4 dB larger than what is 
predicted by the linear framework.

User Guidelines
Measure the FRF ( )G kBLA

t  and its variance ( )kG
2vt  following  

the guidelines for nonparametric measurements of the BLA, 
and estimate the parametric model. Take care: while the  
uncertainty bounds of the linear theory could be safely 
used for nonparametric models, they are not valid for the 
parametric model. There exists, for the time being, no 
simple theory to provide better error bounds. The BLA can 
also be directly estimated from the raw input–output data 
in the time or frequency domain, using the classical linear 
framework. A detailed step-by-step procedure explaining 
how to identify a parametric estimate of the BLA is given in 
[4, Chap. 7].

Nonlinear distortion analysis  
under closed-loop conditions
The nonparametric nonlinear distortion analysis method 
that was proposed earlier in this article has to be used 

In many applications, a parametric transfer function model  

or state-space representation of the system is needed, together  

with an estimate of the model uncertainty.
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under open-loop measurement conditions. To prevent 
unstable behavior or saturation, the measurements on a 
dynamic system are often made under closed-loop condi-
tions. In other situations, the interaction between the 
system and the actuator creates closed-loop effects, espe-
cially when the input impedance of the system is not very 
large with respect to the output impedance of the actuator. 
Because this interaction is the typical situation for mechan-
ical systems, the open-loop nonlinear distortion analysis 
and the concept of BLA need to be generalized to these 
closed-loop measurement conditions. The impact of 
closed-loop conditions on the measurement of the FRF of a 
linear system is discussed in “Measuring the FRF of a 
Linear System Under Closed-Loop Conditions.” Without 
special precautions, the closed-loop effect will create sys-
tematic errors on the FRF measurement. Either the FRF of 
the feedforward, the FRF of the inverse feedback, or a 
combination of both is measured. For that reason, more 
advanced measurement techniques are needed under 
feedback conditions.

The detection and characterization of the nonlinear dis-
tortions also needs to be changed. Due to the presence of a 
feedback loop, the nonlinear distortions at the output of the 
system will also influence the input. This destroys the spe-
cial input design that was proposed and illustrated in the 
previous section. The input signal spectrum should be zero 
at the detection lines (no excitation), but under closed-loop 

conditions, the nonlinear distortions will now excite these 
frequencies. Two strategies are proposed to deal with this 
situation. First, a simple correction method is proposed and 
illustrated on the measurement of the open-loop character-
istics of an operational amplifier. Next, the nonlinear distor-
tion concept is extended to more formally address the 
closed-loop situation.

The presence of the feedback also makes it impossible to 
impose the specially designed multisine signals with the 
detection lines put equal to zero (those frequencies that 
were not excited) because the feedback signal will be added 
to it. To deal with that situation, two solutions are proposed. 
For large SNRs, a correction algorithm is proposed to com-
pensate for the nonideal excitation signal. Only the signals 
in the loop (u, y) are needed. For lower SNRs, an indirect 
method is proposed that requests the availability of the ref-
erence signal r.

Characterizing Nonlinear Distortions Under Closed-
Loop Conditions Using a First-Order Correction
If the nonlinear distortions are not too large, and the SNR 
is high (for example, more than 20 dB), it can be safely 
assumed that, at the excited frequencies, the reference 
signal dominates the disturbances, and hence, as explained 
in “Measuring the FRF of a Linear System Under Closed-
Loop Conditions,” .G G.u  This measured value is used to 
compensate for the presence of the feedback contributions 

Measuring the FRF of a Linear System Under Closed-Loop Conditions

Measuring the FRF of a system under closed-loop con-

ditions requires special precautions. Depending on 

the SNR of the measurements, either the FRF of the feed-

forward branch, the inverse feedback branch, or a combina-

tion of both results. The simplest approach to measure the 

FRF of a system is to measure the input and output signals 

( ), ( ), , ,u kT y kT k N1s s f= , with /T f1s s=  the sampling period, 

calculate the discrete Fourier transforms ( ), ( )U k Y k  of these 

signals, and divide the resulting spectra to obtain an estimate 

( ) ( ) / ( )G k Y k U k=t  at the frequency kfs/N. The raw data need 

to be averaged to reduce the noise and leakage errors. This 

should be done before dividing the spectra because large 

errors will occur at those frequencies where U(k) becomes 

very small. For that reason, it is better to estimate first the 

cross- and autospectrum , ,S SYU UU
t t  and the FRF estimate at 

frequency k is

	 ( )
( )
( )

.G k
S k
S k

UU

YU
=t
t

t
� (S5)

These methods became popular in the 1960s, especially in 

combination with pseudorandom-binary excitation signals to 

generate multifrequency excitations [46], [S7]. To do so, the re-

cord is split in P subrecords, and for each of these the discrete 

Fourier transform ( ), ( ), , ,U k Y k l P1[ ] [ ]l l f=  is calculated. The 

cross- and autopower spectrum estimate is then [4]

	 ( ) ( ) ( ), ( ) | ( ) | ,S k P Y k U k S k P U k1 1[ ] [ ] [ ]
YU

l

l

P
l

UU
l

P
l

1 1

2= =
= =

t r t/ /

where Ur  is the complex conjugate of U. When the measure-

ment is made under feedback conditions (see Figure 37), the 

output y(t) depends on both the measured input u(t) and the 

disturbance source v(t). Due to the presence of the feedback 

loop, the signal u depends also on the disturbance v. As a re-

sult, the FRF measurement at frequency k converges to [S8]

	
| |

.G
S C S
GS CS
RR VV

RR VV
2=

+
-u r

This expression reduces to ,G G=u  if SVV = 0 (r dominates over 

v), and / ,G C1=-u  if SRR = 0 (v dominates over r). For mixed 

SNR, the estimate becomes a mixture of the feedforward and 

feedback characteristics.
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at those frequencies where the input was assumed to be 
zero. The direct feed through of these disturbing terms on 
the output at the detection lines kdet can then be compen-
sated for [3], [4], [76]

	 ( ) ( ) ( ) ( ),Y k Y k G k U kdet det det det
ˇ

corr = -

where ( )G kdetˇ  is an interpolated value that is obtained from 
the neighboring excited frequencies. At those frequencies, 
by using that ( ) ,R k 0det =  the corrected output equals

	 .Y Y GU GC V GC
GC V V1

1
1

ˇ
corr = - =

+
-
+
- =

Hence, the original value of the disturbance is retrieved. 
The sensitivity function 1/(1 + GC) of the closed loop is 
removed, which shows that the correction results in an 
“opening” of the closed loop.

Experimental Illustration on an Operational Amplifier
The results in this section are obtained from the work 
reported in the publications [77], [78]; a detailed descrip-
tion of the experimental setup is given in these articles.

The previously explained methods are applied to the 
characterization of an operational amplifier (OPAMP). 
Such a device cannot operate in open loop due to the very 
high gain at low frequencies (10,000 or more). For that 
reason the OPAMP under test is captured in a feedback 
loop, as shown in Figure 33.

Replacing the nonlinear system by its BLA plus the non-
linear noise term yS results in the equivalent representation 
for the OPAMP setup in Figure 34.

The reference signal r(t) that excites the feedback circuit is 
again designed as explained earlier in this article. At the 
excited frequencies, the reference signal r dominates, and 
the open-loop characteristic of the OPAMP will be mea-
sured. At the detection lines the disturbances yS dominate, 
and hence the inverse controller characteristic will be 
obtained. The results are shown in Figure 35. Using the color 
red for the feedforward and green for the feedback, the dif-
ferent FRFs become visible. As expected, the OPAMP has a 
large gain at low frequencies, but above the cross-over fre-
quency around 200 Hz, the amplitude rolls off with 6 dB/
octave. This is in agreement with the results from textbooks. 
The FRF of the inversed feedback (green) remains constant 
over the frequency, which is again in agreement with the 
resistive feedback network in Figure 33. At low frequencies, 
the measurements are strongly scattered; it will be shown 
below that this is because the nonlinear distortions to noise 
ratio is very low at those frequencies (Figure 36).

The results of the nonparametric nonlinear distortion 
analysis are shown in Figure 36, before applying the com-
pensation in (a), while the compensated results are given in 
(b). The most obvious difference is the strong increase of the 
nonlinear distortion level. The high-gain feedback loop 
results in a very strong disturbance suppression. The high 
gain is exchanged for an improved linear behavior. Without 
this high disturbance rejection of the feedback loop, the 

+

–
uref u (t )

y (t )

Figure 33  An operational amplifier, captured in a feedback loop. 
The signals u, y are measured.
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Figure 35  The nonlinear distortion analysis of an operational 
amplifier (OPAMP), captured in a closed-loop setup. The signals 
( ), ( )u t y t  are measured. The feedback effects are eliminated using 

a compensation algorithm. A random odd excitation is used. At the 
excited frequencies, the open-loop frequency response function 
(FRF) of the OPAMP is measured (red). At the unexcited frequen-
cies, the inverse of the feedback loop is measured (green crosses). 
As expected, the OPAMP has a large gain at low frequencies, but 
above the crossover frequency around 200 Hz, the amplitude rolls 
off with 6 dB/octave. The FRF of the inverse transfer function of the 
feedback 1/GFB (green) remains constant over the frequency. At low 
frequencies the measurements are strongly scattered because the 
nonlinear distortions to noise ratio is very low at those frequencies.
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Figure 34  The linear equivalent representation of the operational 
amplifier setup in Figure 33.
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nonlinearities at low frequencies would become as large as 
the actual output of the OPAMP. So it can be concluded that 
the nonlinearity level will set the maximum gain that can be 
obtained with an OPAMP circuit.

Characterizing Nonlinear Distortions Under  
Closed-Loop Conditions: An Extended Framework
As explained before, two problems are faced to deal with 
measurements under closed-loop conditions: 1) the FRF 
measurement is biased, and 2) the actual excitation signal 
u(t) in Figure 37 is disturbed by the nonlinear distortions 
that are fed back to the input so that the detection lines are 
also excited, which is in conflict with their definition. In the 
previous sections, a simple linear correction method was 
proposed to reduce the effects on the distortion analysis. 
Here an extended framework is presented that eliminates 
the bias on the FRF measurements and generalizes the con-
cepts of BLA and the stochastic nonlinear contributions to 
closed-loop systems (the actuator, the plant, and the con-
troller can be nonlinear). Here an intuitive explanation is 
given; see [79] for a detailed and formal discussion. The 
basic idea is to use not only the measured input and output 
u, y, but to also make explicit use of the availability of the 
reference signal r (see Figure 37).

The Indirect FRF-Measurement Method
When a direct measurement of the BLA GBLA is made (S5), the 
nonlinear distortions YS in Y G U YBLA s= +  will create a bias

	 .G S
S G S

S
UU

YU

UU

Y U
BLA BLA

S= = +t

(the frequency index k is dropped to simplify the nota-
tions). In general, S 0Y US !  because, through the feedback 
path, the input U depends on the nonlinear distortions YS. 
The bias term /S SY U UUS  can be eliminated by making an 
indirect measurement of the BLA. The FRF GBLA  is esti-
mated as the division of the BLA from the reference signal 
to the input Gur and from the reference to the output Gyr

	 .G G
G

S
S

,r
ur

yr

UR

YR
BLA = =

Nonlinear Distortion Analysis Using the Indirect Method
Define the stochastic nonlinear contributions ,U YS Su u  with 
respect to the reference signal r as

	
,
.

Y G R Y
U G R U

yr S

ur S

= +

= +

u

u

A generalized definition for the stochastic nonlinearities YS 
of the plant, captured in the closed loop is

	 .Y Y G U,S S r SBLA= -u u

The following properties of GBLA,r and the generalized non-
linear distortions are shown to hold [79]

C
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u y

v
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Figure 37  Measuring under feedback conditions. Observe that 
the input signal u(t) depends on the reference signal r(t) and is 
also affected by the disturbance v(t), so that the input is no longer 
independent of the disturbances as it is the case under open-loop 
measurement conditions.
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Figure 36  The nonlinear distortion analysis at the output of the 
OPAMP (a) before and (b) after the software elimination of the 
feedback effects (see Figure 35). The figure shows the output 
measured at the excited frequencies (blue), the odd (red), and 
even (green) nonlinear distortions and the disturbing noise level 
(black). The broken black line gives the disturbing noise level after 
compensation. The nonlinear distortions in (a) are smaller than in 
(b). The feedback is suppressing the nonlinear distortions. In (b), 
the odd nonlinear distortions become as large as the output at the 
excited frequencies. This shows that an OPAMP is a heavily non-
linear component that is linearized by the feedback loop at a cost 
of the gain of the amplifier.
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»» Open loop, nonlinear system, and linear actuator: The 
extended concepts of the BLA and the nonlinear dis-
tortions become identical to the previously defined 
open-loop concepts.

»» Closed loop, linear system, nonlinear actuator, and nonlin-
ear feedback: In this case, GBLA equals the FRF of the 
linear system transfer function. The generalized sto-
chastic nonlinearities YS are equal to zero. ,U YS Su u  will 
be different from zero, pointing to the global nonlin-
ear behavior of the loop. However, it will be detected 
that the plant is linear. This allows the nonlinear con-
tributions in the loop to be assigned to the controller.

»» Closed loop, nonlinear system, nonlinear actuator, and 
nonlinear feedback: The level of the nonlinear behavior 
of the plant is detected. Some precautions should be 
taken when interpreting the presence of even and 
odd nonlinear contributions. Precise conditions, that 
can be easily verified in practice, are given in [79], to 
check if the results are reliable.

These results confirm that the simplified procedure that 
was explained earlier in this article can be used safely if the 
SNR is more than 10 dB (bias below 10%) or 20 dB (bias 
below 1%).

Publicly available software
All the results in this article can be reproduced using pub-
licly available Matlab toolboxes. The motivational example 
was produced using the System Identification toolbox of 
Matlab (Mathworks). Alternatively, the freely available fre-
quency-domain identification toolbox FDIDENT could be 
used to obtain similar results (http://home.mit.bme.
hu/+kollar/fdident/). This toolbox also includes the tools 
to design the random-phase multisines and to perform the 
nonparametric nonlinear analysis. In [4], all the procedures 
that are presented in this article are discussed in full detail, 
and the related Matlab software can be freely downloaded 
from booksupport.wiley.com.

Conclusions
This article studied the problem of how to deal with non-
linear distortions in the linear system identification frame-
work. In a first step, nonparametric tools were discussed to 
detect the presence and the level of the nonlinear distor-
tions and to analyze their nature (even or odd). Next, the 
concept of the BLA was introduced. The dependency of the 
BLA on the user choices was studied (choice of the excita-
tion signal, and choice of the approximation criterion). 
Optimal measurement strategies to measure the FRF of the 

BLA were presented, and eventually the impact of the non-
linear distortions on the linear parametric identification 
approach were discussed. All these methods were illus-
trated on real-life examples.
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