

 $\dot{x} = f(t, x, u)$ where x is the state vector, u the input vector, $f(\cdot)$ a nonlinear function. (case considered in the following) Such a general modeling enables to better capture features of physical systems \hookrightarrow However, there is no general methods to deal with all nonlinear systems

INSA

6 / 42

8 / 42

pitre 1 : Introduction Existence of a solution	
Sommaire	
Nonlinear models?	
e Existence of a solution	
equilibrium point	
Linearization	
❺ Case study	
	13 / 42

Chapitre 1 : Introduction Existence of a solution

Example 1

$$\dot{x} = -x^3$$
 with $x(0) = 1$

$$-x^3$$
 is Lipschitz for all x such that $|x - x_0| \le r = 1.5$

$$\frac{|-x_2^3 - (-x_1^3)|}{|x_2 - x_1|} \le k$$

(but not true $\forall x \in \mathbb{R}$)

$$\Rightarrow$$
 It exists a unique solution : $extsf{x}(t) = rac{1}{\sqrt{1+2t}}$


```
Chapitre 1 : Introduction
                                                                                              INSA
  └─ Existence of a solution
    Existence of a solution
   Question : (Cauchy problem)
   Let be the system
                  \dot{x} = f(t, x), with the initial condition x(t_0) = x_0 \in \mathbb{R}^n
   Does a solution x(t) exist for t > t_0? Is it unique? dependence on init. cond.?
    Theorem : local existence and uniqueness
   If f(t, x) is piecewise continuous in t and satisfy the Lipschitz condition, that is,
   there exists a constant L > 0 such that \forall x_1, x_2 \in B = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le r\}, and
   \forall t \in [t_0, t_1]
                                ||f(t, x_2) - f(t, x_1)|| < L||x_2 - x_1||
   then, there exists some \delta > 0 such that the above system has a unique solution over
   [t_0, t_0 + \delta].
                                                                                                     14 / 42
```

Chapitre 1 : Introduction Existence of a solution

INSA

Example 2

$$\dot{x} = x^{2/3}$$
 with $x(0) = 0$

has two solutions (non unicity) :
$$x(t) = 0$$
 and $x(t) = \frac{1}{27}t^3$

 \Rightarrow actually, $x^{2/3}$ not Lipschitz around 0

$$\frac{|x^{2/3} - 0|}{|x - 0|} = |x^{-1/3}|$$

(not bounded when $x \rightarrow 0$)

16 / 42

INSA

Chapitre 1 ∶ Introduction └─Existence of a solution

Example 3

 $\dot{x} = -x^{2}, \qquad \text{with } x(0) = -1$ $\Rightarrow -x^{2} \text{ is Lipschitz for } \forall x_{1}, x_{2} \in B = \{x \in \mathbb{R} \mid |x - x_{0}| \leq r\}$ $\frac{|-x_{2}^{2} - (-x_{1}^{2})|}{|x_{2} - x_{1}|} \leq L$ (locally Lipschitz $\forall x \in \mathbb{R}$) $\Rightarrow \text{ a unique solution for } t \in [0, \delta]$

 $\Rightarrow \text{ a unique solution for } t \in [0, \delta]$ $x(t) = \frac{1}{t-1}$ but $\delta < 1$

Chapitre 1 : Introduction LExistence of a solution

INSA

17 / 42

INSA

Lipschitz condition and derivative of f

This observation extends to vector-valued functions

$$\left. \frac{\partial f}{\partial x}(t,x) \right\| \leq L \qquad f \text{ is Lipschitz} \qquad (\text{for some domain})$$

Lemma : Locally Lipschitz

If f(t,x) and $\frac{\partial f}{\partial x}(t,x)$ are continuous on $[t_0,t_1] \times D$, for some domain $D \subset \mathbb{R}^n$, then f is locally Lipschitz on $[t_0,t_1] \times D$.

Lemma : Globally Lipschitz

If f(t,x) and $\frac{\partial f}{\partial x}(t,x)$ are continuous on $[t_0,t_1] \times \mathbb{R}^n$, then f is globally Lipschitz on $[t_0,t_1] \times \mathbb{R}^n$ if and only if $\frac{\partial f}{\partial x}$ is uniformly bounded on $[t_0,t_1] \times \mathbb{R}^n$.

Chapitre 1 : Introduction LExistence of a solution	INSA
Back on previous examples	
Example 2 : $\dot{x} = x^{2/3}$, with $x(0) = 0$	
$\left(x^{2/3}\right)' = \frac{2}{3}x^{-1/3}$	
Hence, $ f(x)' $ unbounded at 0 \Rightarrow f not Lipschitz around 0	
Example 3 : $\dot{x} = -x^2$, with $x(0) = -1$	
$\left(-x^2\right)'=-2x$	
Hence, $ f(x)' $ bounded for any x in some domain $D \Rightarrow f$ locally Lipschitz $orall x \in \mathbb{F}$	8

Chapitre 1 : Introduction └─ Existence of a solution

Exercise

Chapitre 1 : Introduction

Exercise

└─ Existence of a solution

Consider system

Consider system

 $\dot{x} = f(x) = -x^2 + a\sin(x)$

INSA

21 / 42

23 / 42

INSA

Is f(x) Lipschitz (locally or globally) or not?

Chapitre 1 : Introduction INSA └─ Existence of a solution Exercise Consider system $\begin{bmatrix} -x_1 + x_1 x_2 \\ x_2 - x_1 x_2 \end{bmatrix}$ $\dot{x} =$ f(x)Is f(x) Lipschitz (locally or globally) or not? Chapitre 1 : Introduction INSA └─Equilibrium point

22 / 42

Is f(x) Lipschitz (locally or globally) or not?

 $\dot{x} = f(x) = -x + a\sin(x)$

Chapitre 1 : Introduction Equilibrium point

Equilibrium point

Definition

A point x^* is an equilibrium point if when the current state $x = x^*$, the system remains at this point ($\rightarrow \dot{x} = 0$). The equilibrium points are given by the roots of

f(x) = 0

For the pendulum example, equilibrium points are characterized by

$$\begin{cases} 0 = x_2 \\ 0 = -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{cases} \Rightarrow \begin{cases} x_2^* = 0 \\ x_1^* = 0 \pm n\pi, \quad n = 0, 1, 2, \dots \end{cases}$$

 \hookrightarrow mathematically infinitely many points, physically two positions

hapitre 1 : Introduction - Equilibrium point	INSA
Exercise	TOULOUSE
Consider system	
$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1(1 - a^2 x_1^2) - x_2 \end{cases}$	
where $a > 0$ is a constant parameter.	
Calculate the equilibrium point(s)?	
	26 /
	26 / INSA
	26 / INSA
L-Linearization	26 / INSA TOULOUSE
Sommaire	26 /
Linearization Sommaire 1 Nonlinear models ?	26 / INSA TOULOUSE
 Sommaire Nonlinear models ? Existence of a solution 	26 / INSERT
 Nonlinear models? Existence of a solution Equilibrium point 	26 /

25 / 42

INSA

Chapitre 1 : Introduction

```
More generally
```

Let's consider an equilibrium point x^* for system

 $\dot{x} = f(x),$ with $x(0) = x_0$

and define the deviation variable : $\tilde{x} = x - x^{\star}$

Its dynamic is

$$\dot{\tilde{x}} = \dot{x} = f(x) = f(x^* + \tilde{x}),$$
 with $\tilde{x}(0) = x_0 - x^*$

Use **Taylor series** around x^*

$$f(x^* + h) = f(x^*) + f'(x^*)h + \frac{1}{2!}f''(x^*)h^2 + \frac{1}{3!}f^{(3)}(x^*)h^3 + \cdots$$

valid if $h \ (= \tilde{x})$ small enough

30 / 42

INSA

Chapitre 1 : Introduction Linearization Linear approximation (general case) Let x* be an equilibrium point for system $\dot{x} = f(x)$, a linear model around that point is given by : $\dot{x} \simeq \frac{\partial f}{\partial x}(x^*) \tilde{x}$ with $\tilde{x} = x - x^*$ and $\frac{\partial f}{\partial x}(\cdot)$ the Jacobian matrix of the vector-valued function f at the equ. pt. Reminder, Jacobian matrix : $\frac{\partial f}{\partial x}(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$ • One could also linearize around an operating point or a trajectory

31 / 42

Chapitre 1 : Introduction

Back on the liquid level example

Nonlinear model :

$$\dot{x}(t) = -a\sqrt{x(t)} + \frac{1}{\rho}q_e(t), \quad \text{with } x(0) = 0.5 \ m$$

For a constant input mass flow rate $q_e(t)=q_0\;kg/s\Rightarrow$ equilibrium pt $x^\star=\left(rac{q_0}{a_O}
ight)^2$

Chapitre 1 : Introduction

Exercise

Consider system

$$\begin{cases} \dot{x}_1 = -x_1 + x_1 x_2 \\ \dot{x}_2 = x_1 + x_2 - 2x_1 x_2 \end{cases}$$

Calculate the equilibrium point(s)? Linearize the system around (1,1)

- Existence of a solution
- 6 Equilibrium point
- Linearization
- Gase study

INSA

INSA

Chapter 1: Introduction Case study Case study Population dynamics study the evolution of the size N(t) of a population First simple model : Malthus model $\hat{N}(t) = \alpha N(t) - \beta N(t)$ α is the birth rate and β the death rate Model is linear are nonlinear? What is (are) the equilibrium point(s)? Existence and unicity of the solution ? 27/42

INSA

39 / 42

Chapitre 1 : Introduction Case study

Second case

Second model : Verhulst (or logistic) model

$$\dot{N}(t) = rN(t)\left(1 - \frac{N(t)}{K}\right)$$

that takes into account a maximal critical size of the population ${\cal K}$ (carrying capacity). r is the growth rate.

- ► Model is linear are nonlinear?
- What is (are) the equilibrium point(s)?
- Existence and unicity of the solution?

Chaptre 1: Introduction	IN
Solution	
Chapitre 1 : Introduction	
Case study	IN
Chapitre 1 : Introduction Case study Solution	IN
Case study	N
Case study	Ĩ
Case study	Ĩ
Case study	IN
Case study	IN
Case study	IN
Case study	

INSA

42 / 42