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Nonlinear models ?

Linear systems

What you have seen so far... Models of the form

Linear ordinary différential equ.

F(0) +37(8) +2¢() = u(t)

Linear state space
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Fundamental property : superposition principle

{ u1(t)m>y1(t) = aui(t) + b ua(t)
() 2o o (1)

— Allows to establish very strong and generic results

Transfer function
Y(s) _ 1
U(s)  s*+3s+2

lin. sys.

—ay
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(8) + bya(2)
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Nonlinear models ?
Example

Consider a mass spring damper system

0 Yo y(t)
}_

f—

initial position Yo
m initial velocity 0

:}7

c

A simple model is obtained from Newton's law

my+cy+ky =0

One can derive a Laplace domain or a state space representation

X (0 1 )X
= k
Y(s) = —5 “m Tm
ms? + cs + k (1 0)
= X
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Nonlinear systems

More realistic models
x = f(t,x, u)

where x is the state vector, u the input vector, f(-) a nonlinear function.

Other cases :

» Unforced system : x = f(t,x)
> Autonomous system : x = f(x) (case considered in the following)
> Affine in u : x = f(x) + g(x)u

Such a general modeling enables to better capture features of physical systems

— However, there is no general methods to deal with all nonlinear systems
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Nonlinear models ?

Example 1

Liquid level control

Sy : section réservoir

qe(t)

h(t)

Sa ¢ section sortie
p ¢ densité fluide

P : pression en haut réservoir

ression en sortie

: vitesse en haut réservoir

as(t)

vy ¢ vitesse en sortie

The change in mass in the tank is
m(t) = pS1h(t) = ge(t) — pSava(t)
——
as(t)
Using the Bernouilli's equation : 1 pv2(t) + Py + pgh(t) = 1pv2(t) + P2

— wo(t) = /2gh(t)
Let us define the state variable x = h, we get :

() = —ay/x(0) + %qe(t), with 2 = ‘Sij\/g
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Example 2

A simple free pendulum

Applying the Newton’s second law, the equation of motion is obtained :

ml 6(t) = —mgsin 0(t) — ki 6(t)

Let us define the state variables x; = 6 and x» = 6, we get :

x| X2
X | 7%sinxlfgxz
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Nonlinear models ?

Origins of nonlinearities

> Physical modeling. Inherent to laws of Physics as in previous examples

> Engineering design. Inherent to how the system work, introduced by the
engineer, technological aspect...

r(s) 4+~ €(s) y(s)

H(T)__. C(s) (() G(s)
Relay / \ Saturation

e(s) ': u(s) us) || )
- 4/| u
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Nonlinear phenomena
...that do not exist with linear modeling.
» Multiple isolated equilibria. Pendulum example

> Finite escape time. The state goes to infinity when time approaches a finite
value. Example :

x = —x%, with the initial condition x(0) = —1
= The solution is "
1
x(t) = ——
(t)=1— .

s 1 12
time ¢

A
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Nonlinear phenomena
> Limit cycles.

Linear case LTI systems oscillate if they have pure imaginary poles.
< It is a critical stability and nonrobust condition

< Oscillation amplitude depends on initial condition

X1 = x2
X2 = —x1

Nonlinear case Can produce stable oscillations

INSA
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< with fixed amplitude and frequency independently from initial conditions

Van der Pol equation

{ X1 = X2 3° ]
X2 = —x1 + (1 — xf)xz i
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Nonlinear phenomena
> Frequency response
Linear case The response to a sine function is also a sine function (at steady state)
< with the same frequency w

< and different amplitude and phase shift w.r.t. w

1 =
0.5]
u(s) F(s) y(s) o
u(t) = ug sin(wt) y(t) = yosin(wt + ) 05
-1
[ g 10 15

Lime |5

Nonlinear case Can produce harmonics, subharmonics, and even almost-periodic output

12r —input with w = 10-
|—output

\
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Existence of a solution

Question : (Cauchy problem)
Let be the system
x = f(t,x), with the initial condition x(tp) = xo € R”

Does a solution x(t) exist for t > to ? Is it unique ? dependence on init. cond. ?

Theorem : local existence and uniqueness

If £(¢t,x) is piecewise continuous in t and satisfy the Lipschitz condition, that is,
there exists a constant L > 0 such that Vxi,x2 € B={x € R" | ||x — xo|| < r}, and
Vt € [to, t1]

[l (£, x2) — £(t,x1)|| < L||x2 — x1]|

then, there exists some § > 0 such that the above system has a unique solution over
[to, to + 4]
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Existence of a solution

Example 1

—x3 is Lipschitz for all x such that [x —xo| < r=1.5

(but not true Vx € R)

| =x3 — (=}
Ix2 — x|
1

= It exists a unique solution : x(t) =

with x(0) =1

V142t

Iy

State z

10
time ¢ [s]

20
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Example 2
%= x2/3 with x(0) = 0
has two solutions (non unicity) : x(t) = 0 and x(t) = £ 3.

= actually, x2/3 not Lipschitz around 0

b2/ o)

= |x713
Ix—o
(not bounded when x — 0)
1
08
’\0.6
-
04
f(z)
0.2
odZo
0 0.2 04 0.6 08 1
State xz(t)
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Example 3

X = —x*, with x(0) = -1

= —x2 is Lipschitz for Vxi,x2 € B={x €R | |x — x0| < r}

| =>4 = (=)l

<L
Ix2 — x|

(locally Lipschitz Vx € R)

= a unique solution for t € [0, ]

10

15

state @

1
)= ——
x(t) =T

but § <1

25

0 02 04 05 08 1 12 14 16 18 2
time ¢
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Lipschitz condition and derivative of f
Scalar and autonomous example : x = f(x) with x € R

f(z)

] } }
To I T2

A unique solution exists if

() — Fla)| _

a<lL Vxi1,x2 € B={x€R||x—x| <r}
Ix2 — x|

< then f(x) is Lipschitz if |f'(x)| is bounded by L
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Lipschitz condition and derivative of

This observation extends to vector-valued functions

f
Hg—(t, x)|| <L f is Lipschitz (for some domain)
X

Lemma : Locally Lipschitz

If £(t,x) and %(t,x) are continuous on [tg, t1] X D, for some domain D C R”, then f
is locally Lipschitz on [tg, t1] X D.

Lemma : Globally Lipschitz

If f(t,x) and %(t7 X) are continuous on [to, t1] X R”, then f is globally Lipschitz on
[to, t1] x R" if and only if % is uniformly bounded on [tg, t1] X R".
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Back on previous examples

Example 2 : x = x2/3, with x(0) =0

(X2/3)/ _ §X—1/3

Hence, |f(x)’| unbounded at 0 = f not Lipschitz around 0

Example 3 : x = —x2, with x(0) = —1

(—%Y:—n

Hence, |f(x)’| bounded for any x in some domain D = f locally Lipschitz Vx € R
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Existence of a solution

Exercise

Consider system

x = f(x) = —x? + asin(x)

Is f(x) Lipschitz (locally or globally) or not ?

INSA
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Existence of a solution

Exercise

Consider system

= —X1 + X1X2
X2 — X1X2

| S —
f(x)

Is f(x) Lipschitz (locally or globally) or not?
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Existence of a solution

Exercise

Consider system

Xx = f(x) = —x + asin(x)

Is f(x) Lipschitz (locally or globally) or not?
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Equilibrium point

A point x* is an equilibrium point if when the current state x = x*, the system
remains at this point (— x = 0). The equilibrium points are given by the roots of

f(x)=0

For the pendulum example, equilibrium points are characterized by
0=x x; =0
=
0:—5,sinx1—%xz xf =0=£ nm, n=0,1,2,..

< mathematically infinitely many points, physically two positions

A

TOULOUSE
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Reminder : for linear systems

x = Ax + Bu (A being non-singular)
there can be only one isolated equilibrium point x* = —A~1Bu*.

» This equilibrium point is 0 in the case of an unforced system x = Ax.

> If Ais singular, there are infinitely many continuous equilibrium points (not
isolated), this set is a subspace in the state-space.

\
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Equilibrium point

Exercise

Consider system

X1 = X2
X = —x1(1 — a2x12) — X2

where a > 0 is a constant parameter.

Calculate the equilibrium point(s) ?

INSA
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Linearization

Linear approximation of a nonlinear model around an equilibrium point

Pendulum example :

ml6 = —mgsin — kl 6

m

around 0 =0, sin(0) ~ 6

A linear model is obtained :

X1 X2 around 6=0 X1 X2
. = . k EEE— . >~ k
X2 —Esinx; — <xo X2 —£x1 — <xo
[ ¥ : } {Xl}
=l_e _k
! m x2
—_—————
A
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More generally
Let's consider an equilibrium point x* for system

x = f(x), with x(0) = xp
and define the deviation variable : X = x — x*

Its dynamic is

% =x=f(x) = f(x* + %), with %(0) = xp — x*
Use Taylor series around x*
F(x* + h) = F(x*) + F'(x*)h + %f"(x*)hz + %f(:’)(x*)h:’ 4o

valid if h (= X) small enough
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Linear approximation (scalar case)

1 1
FOt o h) & FO) 7 (e 6T+ O
(<" h) = )+ (bt T 7

=0

| x
v S
For our system )
X = f(x* + )?)
~ f/(x*) %
= linear model of the form : X~ a%, with %(0)=x — x*
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Linear approximation (general case)

]
Let x* be an equilibrium point for system x = f(x), a linear model around that point
is given by :

. Of .
X~ —(x*) X with X = x — x*
Ox
A

and %(v) the Jacobian matrix of the vector-valued function f at the equ. pt.

» Reminder, Jacobian matrix :

Ox1 Ox2 Oxn
of; ot :
g(x): of .. of ) _ ﬁ ﬁ
Ix Ox1 Oxn .
Oxq Oxa Oxn

» One could also linearize around an operating point or a trajectory
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Back on the liquid level example

Nonlinear model :

x(t) = —av/x(t) + %qe(t)7 with x(0) = 0.5 m

2
For a constant input mass flow rate ge(t) = qo kg/s = equilibrium pt x* = (g—g)

Linearization : l

La
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Linearization

Back on the pendulum example
Nonlinear model :
X1 _ X2
)'Q - —%sinxl - %Xz

Consider the equilibrium pt x* = [0 O]T

Linearization :

Jacobian matrix
of of

of oL L 0

a(x)=[%§ %e]=[ ‘

Ox1 Bxa

Linear model

— 5 cosxy

30>
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Exercise
Consider system

{ X1 = —x1 + x1x2

Xp = X1 + X2 — 2x1X2

Calculate the equilibrium point(s) ? Linearize the system around (1,1)
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Case study

Population dynamics study the evolution of the size N(t) of a population

First simple model : Malthus model

N(t) = aN(t) — AN(t)
« is the birth rate and 3 the death rate
» Model is linear are nonlinear?

> What is (are) the equilibrium point(s) ?

> Existence and unicity of the solution ?

INSA
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Case study

Second case

Second model : Verhulst (or logistic) model
. N(t
N(t) = rN(t)(l - %)

that takes into account a maximal critical size of the population K (carrying
capacity). r is the growth rate.

> Model is linear are nonlinear?
> What is (are) the equilibrium point(s) ?

> Existence and unicity of the solution?
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In short

» Nonlinear model are very general model
x = f(x)

Results for linear model x = Ax not applicable
» A solution exists and is unique if a Lipschitz condition is satisfied.

» The equilibrium points x* are given by the roots of

f(x)=0

»> A nonlinear system may be approximated by a linear system around an
equilibrium point

approx

—_—

x = f(x) ox = Adx

with x = x* + dx and A= %(X*)
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