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Nonlinear models ?

Linear systems

What you have seen so far... Models of the form

Fundamental property : superposition principle

{
u1(t)

lin. sys.−−−−−→ y1(t)

u2(t)
lin. sys.−−−−−→ y2(t)

⇒ a u1(t) + b u2(t)
lin. sys.−−−−−→ a y1(t) + b y2(t)

↪→ Allows to establish very strong and generic results
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Nonlinear models ?

Example

Consider a mass spring damper system

A simple model is obtained from Newton's law

mÿ + cẏ + ky = 0

One can derive a Laplace domain or a state space representation

Y (s) =
y0

ms2 + cs + k

ẋ =

(
0 1

− k
m
− c

m

)
x

y =
(
1 0

)
x
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Nonlinear models ?

Nonlinear systems

More realistic models

ẋ = f (t, x , u)

where x is the state vector, u the input vector, f (·) a nonlinear function.

Other cases :

I Unforced system : ẋ = f (t, x)

I Autonomous system : ẋ = f (x) (case considered in the following)

I A�ne in u : ẋ = f (x) + g(x)u

Such a general modeling enables to better capture features of physical systems

↪→ However, there is no general methods to deal with all nonlinear systems
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Nonlinear models ?

Example 1

Liquid level control

The change in mass in the tank is

ṁ(t) = ρS1ḣ(t) = qe(t)− ρS2v2(t)︸ ︷︷ ︸
qs (t)

Using the Bernouilli's equation : 1
2
ρv21 (t) + P1 + ρgh(t) = 1

2
ρv22 (t) + P2

↪→ v2(t) =
√
2gh(t)

Let us de�ne the state variable x = h, we get :

ẋ(t) = −a
√

x(t) +
1

ρ
qe(t), with a =

S2

S1

√
2g
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Nonlinear models ?

Example 2

A simple free pendulum

Applying the Newton's second law, the equation of motion is obtained :

ml θ̈(t) = −mg sin θ(t)− kl θ̇(t)

Let us de�ne the state variables x1 = θ and x2 = θ̇, we get :[
ẋ1
ẋ2

]
=

[
x2

− g
l
sin x1 − k

m
x2

]
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Nonlinear models ?

Origins of nonlinearities

I Physical modeling. Inherent to laws of Physics as in previous examples

I Engineering design. Inherent to how the system work, introduced by the
engineer, technological aspect...
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Nonlinear models ?

Nonlinear phenomena

...that do not exist with linear modeling.

I Multiple isolated equilibria. Pendulum example

I Finite escape time. The state goes to in�nity when time approaches a �nite
value. Example :

ẋ = −x2, with the initial condition x(0) = −1

⇒ The solution is

x(t) =
1

t − 1
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Nonlinear models ?

Nonlinear phenomena

I Limit cycles.

Linear case LTI systems oscillate if they have pure imaginary poles.

↪→ It is a critical stability and nonrobust condition

↪→ Oscillation amplitude depends on initial condition

{
ẋ1 = x2

ẋ2 = −x1

Nonlinear case Can produce stable oscillations

↪→ with �xed amplitude and frequency independently from initial conditions

Van der Pol equation{
ẋ1 = x2

ẋ2 = −x1 + (1− x21 )x2
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Nonlinear models ?

Nonlinear phenomena

I Frequency response

Linear case The response to a sine function is also a sine function (at steady state)

↪→ with the same frequency ω

↪→ and di�erent amplitude and phase shift w.r.t. ω

Nonlinear case Can produce harmonics, subharmonics, and even almost-periodic output

{
ẋ1 = x32

ẋ2 = −x1 + (1− x2)u
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Existence of a solution

Existence of a solution

Question : (Cauchy problem)

Let be the system

ẋ = f (t, x), with the initial condition x(t0) = x0 ∈ Rn

Does a solution x(t) exist for t > t0 ? Is it unique ? dependence on init. cond. ?

Theorem : local existence and uniqueness

If f (t, x) is piecewise continuous in t and satisfy the Lipschitz condition, that is,
there exists a constant L > 0 such that ∀x1, x2 ∈ B = {x ∈ Rn | ‖x − x0‖ ≤ r}, and
∀t ∈ [t0, t1]

‖f (t, x2)− f (t, x1)‖ < L‖x2 − x1‖

then, there exists some δ > 0 such that the above system has a unique solution over
[t0, t0 + δ].
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Existence of a solution

Example 1

ẋ = −x3 with x(0) = 1

−x3 is Lipschitz for all x such that |x − x0| ≤ r = 1.5

| − x32 − (−x31 )|
|x2 − x1|

≤ L

(but not true ∀x ∈ R)

⇒ It exists a unique solution : x(t) =
1

√
1+ 2t
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Existence of a solution

Example 2

ẋ = x2/3 with x(0) = 0

has two solutions (non unicity) : x(t) = 0 and x(t) = 1
27

t3.

⇒ actually, x2/3 not Lipschitz around 0

|x2/3 − 0|
|x − 0|

= |x−1/3|

(not bounded when x → 0)

16 / 42



Chapitre 1 : Introduction

Existence of a solution

Example 3

ẋ = −x2, with x(0) = −1

⇒ −x2 is Lipschitz for ∀x1, x2 ∈ B = {x ∈ R | |x − x0| ≤ r}

| − x22 − (−x21 )|
|x2 − x1|

≤ L

(locally Lipschitz ∀x ∈ R)

⇒ a unique solution for t ∈ [0, δ]

x(t) =
1

t − 1

but δ < 1
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Existence of a solution

Lipschitz condition and derivative of f

Scalar and autonomous example : ẋ = f (x) with x ∈ R

A unique solution exists if

|f (x2)− f (x1)|
|x2 − x1|

= α ≤ L ∀x1, x2 ∈ B = {x ∈ R | |x − x0| ≤ r}

↪→ then f (x) is Lipschitz if |f ′(x)| is bounded by L
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Existence of a solution

Lipschitz condition and derivative of f

This observation extends to vector-valued functions∥∥∥∥∂f∂x (t, x)
∥∥∥∥ ≤ L f is Lipschitz (for some domain)

Lemma : Locally Lipschitz

If f (t, x) and ∂f
∂x

(t, x) are continuous on [t0, t1]×D, for some domain D ⊂ Rn, then f
is locally Lipschitz on [t0, t1]× D.

Lemma : Globally Lipschitz

If f (t, x) and ∂f
∂x

(t, x) are continuous on [t0, t1]× Rn, then f is globally Lipschitz on

[t0, t1]× Rn if and only if ∂f
∂x

is uniformly bounded on [t0, t1]× Rn.
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Existence of a solution

Back on previous examples

Example 2 : ẋ = x2/3, with x(0) = 0(
x2/3

)′
=

2

3
x−1/3

Hence, |f (x)′| unbounded at 0 ⇒ f not Lipschitz around 0

Example 3 : ẋ = −x2, with x(0) = −1(
− x2

)′
= −2x

Hence, |f (x)′| bounded for any x in some domain D ⇒ f locally Lipschitz ∀x ∈ R
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Existence of a solution

Exercise

Consider system

ẋ = f (x) = −x2 + a sin(x)

Is f (x) Lipschitz (locally or globally) or not ?

Solution :

f continuously di�erentiable on R : f ′(x) = −2x + a cos(x) (but not bounded)

⇒ f is locally Lipschitz on R

Let's de�ne the set D = {x ∈ R | |x | ≤ b},

|f ′(x)| = | − 2x + a cos(x)| ≤ |2x |+ |a cos(x)| ≤ 2b + a

⇒ L = 2b + a can be a Lipschitz constant ∀x ∈ D
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Existence of a solution

Exercise

Consider system

ẋ =

[
−x1 + x1x2
x2 − x1x2

]
︸ ︷︷ ︸

f (x)

Is f (x) Lipschitz (locally or globally) or not ?

Solution :

f continuously di�erentiable on R2

∂f

∂x
=

[
−1+ x2 x1
−x2 1− x1

]
continuous but not bounded on R2

⇒ f is locally Lipschitz on R2

22 / 42

Chapitre 1 : Introduction

Existence of a solution

Exercise

Consider system

ẋ = f (x) = −x + a sin(x)

Is f (x) Lipschitz (locally or globally) or not ?

Solution :

f continuously di�erentiable, and bounded on R : f ′(x) = −1+ a cos(x)

|f ′(x)| is bounded ∀x ∈ R

⇒ f is globally Lipschitz on R
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Equilibrium point

Equilibrium point

De�nition

A point x? is an equilibrium point if when the current state x = x?, the system
remains at this point (→ ẋ = 0). The equilibrium points are given by the roots of

f (x) = 0

For the pendulum example, equilibrium points are characterized by{
0 = x2

0 = − g
l
sin x1 − k

m
x2

⇒
{

x?2 = 0

x?1 = 0± nπ, n = 0, 1, 2, ...

↪→ mathematically in�nitely many points, physically two positions
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Equilibrium point

Exercise

Consider system {
ẋ1 = x2
ẋ2 = −x1(1− a2x21 )− x2

where a > 0 is a constant parameter.

Calculate the equilibrium point(s) ?

Solution : [
ẋ1
ẋ2

]
= 0 ⇒

{
x2 = 0
x1 = 0 or x2 ± 1

a

There are 3 equilibrium points : (0, 0), (−1/a, 0) and (1/a, 0)
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Equilibrium point

Reminder : for linear systems

ẋ = Ax + Bu (A being non-singular)

there can be only one isolated equilibrium point x? = −A−1Bu?.

I This equilibrium point is 0 in the case of an unforced system ẋ = Ax .

I If A is singular, there are in�nitely many continuous equilibrium points (not
isolated), this set is a subspace in the state-space.

27 / 42

Chapitre 1 : Introduction

Linearization
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Linearization

Linearization

Linear approximation of a nonlinear model around an equilibrium point

Pendulum example :

ml θ̈ = −mg sin θ − kl θ̇

around θ = 0, sin(θ) ∼ θ

A linear model is obtained :

[
ẋ1
ẋ2

]
=

[
x2

− g
l
sin x1 − k

m
x2

]
around θ=0−−−−−−−→

[
ẋ1
ẋ2

]
'
[

x2
− g

l
x1 − k

m
x2

]

'
[

0 1

− g
l
− k

m

]
︸ ︷︷ ︸

A

[
x1
x2

]
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Linearization

More generally

Let's consider an equilibrium point x? for system

ẋ = f (x), with x(0) = x0

and de�ne the deviation variable : x̃ = x − x?

Its dynamic is

˙̃x = ẋ = f (x) = f (x? + x̃), with x̃(0) = x0 − x?

Use Taylor series around x?

f (x? + h) = f (x?) + f ′(x?)h +
1

2!
f ′′(x?)h2 +

1

3!
f (3)(x?)h3 + · · ·

valid if h (= x̃) small enough
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Linearization

Linear approximation (scalar case)

f (x? + h) ' f (x?)︸ ︷︷ ︸
=0

+f ′(x?)h+�����1

2!
f ′′(x?)h2 +�����1

3!
f (3)(x?)h3 +��· · ·

For our system
˙̃x = f (x? + x̃)

' f ′(x?) x̃

⇒ linear model of the form : ˙̃x ' a x̃ , with x̃(0) = x0 − x?

31 / 42

Chapitre 1 : Introduction

Linearization

Linear approximation (general case)

Let x? be an equilibrium point for system ẋ = f (x), a linear model around that point
is given by :

˙̃x '
∂f

∂x
(x?)︸ ︷︷ ︸
A

x̃ with x̃ = x − x?

and ∂f
∂x

(·) the Jacobian matrix of the vector-valued function f at the equ. pt.

I Reminder, Jacobian matrix :

∂f

∂x
(x) =

[
∂f
∂x1

· · · ∂f
∂xn

]
=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


I One could also linearize around an operating point or a trajectory
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Linearization

Back on the liquid level example

Nonlinear model :

ẋ(t) = −a
√

x(t) +
1

ρ
qe(t), with x(0) = 0.5 m

For a constant input mass �ow rate qe(t) = q0 kg/s ⇒ equilibrium pt x? =
(

q0
aρ

)2

Linearization :

˙̃x = −
a

2
√
x?

x̃
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Linearization

Back on the pendulum example

Nonlinear model : [
ẋ1
ẋ2

]
=

[
x2

− g
l
sin x1 − k

m
x2

]

Consider the equilibrium pt x? =
[
0 0

]T

Linearization :

Jacobian matrix

∂f

∂x
(x) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
0 1

− g
l
cos x1 − k

m

]

Linear model

˙̃x =

[
0 1

− g
l
− k

m

]
x̃
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Linearization

Exercise
Consider system {

ẋ1 = −x1 + x1x2

ẋ2 = x1 + x2 − 2x1x2

Calculate the equilibrium point(s) ? Linearize the system around (1, 1)

Solution :

I Two equilibrium points : (0, 0) and (1, 1)

I Jacobian matrix

∂f

∂x
(
[
1

1

]
) =

[
−1+ x2 x1
1− 2x2 1− 2x1

]
(1,1)

=

[
0 1
−1 −1

]
I Linear approximation

˙̃x '
[
0 1
−1 −1

]
x̃ with x̃ = x −

[
1
1

]
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Case study

Case study

Population dynamics study the evolution of the size N(t) of a population

First simple model : Malthus model

Ṅ(t) = αN(t)− βN(t)

α is the birth rate and β the death rate

I Model is linear are nonlinear ?

I What is (are) the equilibrium point(s) ?

I Existence and unicity of the solution ?
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Case study

Solution

I Model is linear

I For α 6= β, unique equilibrium point is 0

I f continuously di�erentiable, f ′(x) = α− β, |f ′(x)| is bounded ∀N ∈ R

⇒ f is globally Lipschitz on R, there exists a unique solution

⇒ Easy in this case : N(t) = N0e(α−β)t

Simulations for N0 = 50
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Case study

Second case

Second model : Verhulst (or logistic) model

Ṅ(t) = rN(t)

(
1−

N(t)

K

)
that takes into account a maximal critical size of the population K (carrying
capacity). r is the growth rate.

I Model is linear are nonlinear ?

I What is (are) the equilibrium point(s) ?

I Existence and unicity of the solution ?
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Case study

Solution

I Model is nonlinear, because of the N2 term.

I There are 2 equilibrium points : 0 and K

I f continuously di�erentiable, f ′(x) = r −
2r

K
N,

|f ′(x)| is bounded ∀N ∈ [Nmin,Nmax]

⇒ f is locally Lipschitz on [Nmin,Nmax], there is a unique solution

Simulations for di�erent initial conditions and K = 200, r = 1.
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In short
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In short

In short

I Nonlinear model are very general model

ẋ = f (x)

Results for linear model ẋ = Ax not applicable

I A solution exists and is unique if a Lipschitz condition is satis�ed.

I The equilibrium points x∗ are given by the roots of

f (x) = 0

I A nonlinear system may be approximated by a linear system around an
equilibrium point

ẋ = f (x)
approx−−−−→ δẋ = A δx

with x = x∗ + δx and A = ∂f
∂x

(x∗)
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