Chapitre 1: Introduction

Yassine ARIBA

$$
\dot{x}=f(x)
$$

Sommaire

(1) Nonlinear models?
(2) Existence of a solution
(3) Equilibrium point
© Linearization
(5) Case study

Example
Nonlinear systems
Consider a mass spring damper system

More realistic models

$$
\dot{x}=f(t, x, u)
$$

where x is the state vector, u the input vector, $f(\cdot)$ a nonlinear function

A simple model is obtained from Newton's law

$$
m \ddot{y}+c \dot{y}+k y=0
$$

One can derive a Laplace domain or a state space representation

$$
\begin{aligned}
Y(s)=\frac{y_{0}}{m s^{2}+c s+k} & \dot{x}
\end{aligned}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right) x
$$

Other cases :

- Unforced system: $\dot{x}=f(t, x)$
- Autonomous system : $\dot{x}=f(x) \quad$ (case considered in the following)
- Affine in $u: \quad \dot{x}=f(x)+g(x) u$

Such a general modeling enables to better capture features of physical systems
\hookrightarrow However, there is no general methods to deal with all nonlinear systems

Applying the Newton's second law, the equation of motion is obtained

$$
m l \ddot{\theta}(t)=-m g \sin \theta(t)-k l \dot{\theta}(t)
$$

Let us define the state variables $x_{1}=\theta$ and $x_{2}=\dot{\theta}$, we get

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-\frac{g}{T} \sin x_{1}-\frac{k}{m} x_{2}
\end{array}\right]
$$

Origins of nonlinearities
Nonlinear phenomena
.that do not exist with linear modeling.

- Physical modeling. Inherent to laws of Physics as in previous examples
- Multiple isolated equilibria. Pendulum example
- Engineering design. Inherent to how the system work, introduced by the engineer, technological aspect.
- Finite escape time. The state goes to infinity when time approaches a finite value. Example :

$$
\dot{x}=-x^{2}, \quad \text { with the initial condition } x(0)=-1
$$

\Rightarrow The solution is

$$
x(t)=\frac{1}{t-1}
$$

1181

Nonlinear phenomena

- Limit cycles

Linear case LTI systems oscillate if they have pure imaginary poles.
\hookrightarrow It is a critical stability and nonrobust condition
\hookrightarrow Oscillation amplitude depends on initial condition

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}
\end{array}\right.
$$

Nonlinear case Can produce stable oscillations
\hookrightarrow with fixed amplitude and frequency independently from initial conditions

Van der Pol equation

$\left\{\dot{x}_{1}=x_{2}\right.$

$\left\{\begin{array}{l}\dot{x}_{2}=-x_{1}+\left(1-x_{1}^{2}\right) x_{2}\end{array}\right.$

Chapitre 1 : Introductio LNonlinear models?

Nonlinear phenomena

- Frequency response

Linear case The response to a sine function is also a sine function (at steady state)
\hookrightarrow with the same frequency ω
\hookrightarrow and different amplitude and phase shift w.r.t. ω

Nonlinear case Can produce harmonics, subharmonics, and even almost-periodic output

$$
\left\{\dot{x}_{\mathbf{1}}=x_{2}^{3}\right.
$$

$$
\left\{\begin{array}{l}
\dot{x}_{\mathbf{1}}=x_{2}^{3} \\
\dot{x}_{2}=-x_{\mathbf{1}}+\left(1-x_{2}\right) u
\end{array}\right.
$$

Sommaire

(1) Nonlinear models?

Let be the system

$$
\dot{x}=f(t, x), \quad \text { with the initial condition } x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

Does a solution $x(t)$ exist for $t>t_{0}$? Is it unique? dependence on init. cond.?

Theorem : local existence and uniqueness

If $f(t, x)$ is piecewise continuous in t and satisfy the Lipschitz condition, that is, there exists a constant $L>0$ such that $\forall x_{1}, x_{2} \in B=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\| \leq r\right\}$, and $\forall t \in\left[t_{0}, t_{1}\right]$

$$
\left\|f\left(t, x_{2}\right)-f\left(t, x_{1}\right)\right\|<L\left\|x_{2}-x_{1}\right\|
$$

then, there exists some $\delta>0$ such that the above system has a unique solution over $\left[t_{0}, t_{0}+\delta\right]$.

Chapitre 1 : Introduction

Example 1

$$
\dot{x}=-x^{3} \quad \text { with } x(0)=1
$$

$-x^{3}$ is Lipschitz for all x such that $\left|x-x_{0}\right| \leq r=1.5$

$$
\dot{x}=x^{2 / 3} \quad \text { with } x(0)=0
$$

has two solutions (non unicity) : $x(t)=0$ and $x(t)=\frac{1}{27} t^{3}$

$$
\Rightarrow \text { actually, } x^{2 / 3} \text { not Lipschitz around } 0
$$

$$
\frac{\left|x^{2 / 3}-0\right|}{|x-0|}=\left|x^{-1 / 3}\right|
$$

(not bounded when $x \rightarrow 0$)

Example 3
Lipschitz condition and derivative of f

$$
\dot{x}=-x^{2}, \quad \text { with } x(0)=-1
$$

$\Rightarrow-x^{2}$ is Lipschitz for $\forall x_{1}, x_{2} \in B=\left\{x \in \mathbb{R}| | x-x_{0} \mid \leq r\right\}$

$$
\frac{\left|-x_{2}^{2}-\left(-x_{1}^{2}\right)\right|}{\left|x_{2}-x_{1}\right|} \leq L
$$

(locally Lipschitz $\forall x \in \mathbb{R}$)
\Rightarrow a unique solution for $t \in[0, \delta]$

$$
x(t)=\frac{1}{t-1}
$$

but $\delta<1$
Chapitre 1: Introduction
Existence of a solution
Lipschitz condition and derivative of f

| Chapitre $1:$ Introduction
 Existence of a solution |
| :--- | :--- |
| Back on previous examples |

This observation extends to vector-valued functions

$$
\left\|\frac{\partial f}{\partial x}(t, x)\right\| \leq L \quad f \text { is Lipschitz } \quad \text { (for some domain) }
$$

Example 2: $\quad \dot{x}=x^{2 / 3}, \quad$ with $x(0)=0$

$$
\left(x^{2 / 3}\right)^{\prime}=\frac{2}{3} x^{-1 / 3}
$$

Hence, $\left|f(x)^{\prime}\right|$ unbounded at $0 \Rightarrow f$ not Lipschitz around 0
Lemma : Locally Lipschitz
If $f(t, x)$ and $\frac{\partial f}{\partial x}(t, x)$ are continuous on $\left[t_{0}, t_{1}\right] \times D$, for some domain $D \subset \mathbb{R}^{n}$, then f is locally Lipschitz on $\left[t_{0}, t_{1}\right] \times D$.

Lemma: Globally Lipschitz

If $f(t, x)$ and $\frac{\partial f}{\partial x}(t, x)$ are continuous on $\left[t_{0}, t_{1}\right] \times \mathbb{R}^{n}$, then f is globally Lipschitz on $\left[t_{0}, t_{1}\right] \times \mathbb{R}^{n}$ if and only if $\frac{\partial f}{\partial x}$ is uniformly bounded on $\left[t_{0}, t_{1}\right] \times \mathbb{R}^{n}$

Scalar and autonomous example : $\dot{x}=f(x)$ with $x \in \mathbb{R}$

A unique solution exists if

$$
\begin{aligned}
& \frac{\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|}{\left|x_{2}-x_{1}\right|}=\alpha \leq L \quad \forall x_{1}, x_{2} \in B=\left\{x \in \mathbb{R}| | x-x_{0} \mid \leq r\right\} \\
& \hookrightarrow \text { then } f(x) \text { is Lipschitz if }\left|f^{\prime}(x)\right| \text { is bounded by } L
\end{aligned}
$$

Back on previous examples

Example 3: $\quad \dot{x}=-x^{2}, \quad$ with $x(0)=-1$

$$
\left(-x^{2}\right)^{\prime}=-2 x
$$

Hence, $\left|f(x)^{\prime}\right|$ bounded for any x in some domain $D \Rightarrow f$ locally Lipschitz $\forall x \in \mathbb{R}$

Chapitre 1: Introduction Existence of a solution Exercise Consider system Is $f(x)$ Lipschitz (locally or globally) or not? $\dot{x}=f(x)=-x^{2}+a \sin (x)$

Exercise
Exercise

Consider system

$$
\dot{x}=\underbrace{\left[\begin{array}{c}
-x_{1}+x_{1} x_{2} \\
x_{2}-x_{1} x_{2}
\end{array}\right]}_{f(x)}
$$

Is $f(x)$ Lipschitz (locally or globally) or not?

Exercise

Chapitre 1: Introduction
Equilibrium point
INSA

Sommaire

Consider system

$$
\dot{x}=f(x)=-x+a \sin (x)
$$

(1) Nonlinear models?

Is $f(x)$ Lipschitz (locally or globally) or not?

- Existence of a solution
- Equilibrium point
(4) Linearization
(5) Case study

Definition

A point x^{\star} is an equilibrium point if when the current state $x=x^{\star}$, the system remains at this point $(\rightarrow \dot{x}=0)$. The equilibrium points are given by the roots of

$$
f(x)=0
$$

Consider system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}\left(1-a^{2} x_{1}^{2}\right)-x_{2}
\end{array}\right.
$$

where $a>0$ is a constant parameter.

Calculate the equilibrium point(s)?

For the pendulum example, equilibrium points are characterized by

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 0 = x _ { 2 } } \\
{ 0 = - \frac { g } { T } \operatorname { s i n } x _ { 1 } - \frac { k } { m } x _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{2}^{\star}=0 \\
x_{1}^{\star}=0 \pm n \pi, \quad n=0,1,2, . .
\end{array}\right.\right. \\
& \hookrightarrow \text { mathematically infinitely many points, physically two positions }
\end{aligned}
$$

Chapitre 1: Introduction	
$\left\llcorner_{\text {Equilibrium point }}\right.$	

Chapitre $1:$ Introductic Linearization

Reminder : for linear systems

$$
\dot{x}=A x+B u \quad \text { (A being non-singular) }
$$

(1) Nonlinear models?
there can be only one isolated equilibrium point $x^{\star}=-A^{-1} B u^{\star}$.
(2) Existence of a solution

- This equilibrium point is 0 in the case of an unforced system $\dot{x}=A x$
(3) Equilibrium point
- If A is singular, there are infinitely many continuous equilibrium points (not isolated), this set is a subspace in the state-space.

Chapitre 1 : Introd
Linearization

Linearization

More generally
Linear approximation of a nonlinear model around an equilibrium point
Let's consider an equilibrium point x^{\star} for system

$$
\dot{x}=f(x), \quad \text { with } x(0)=x_{0}
$$

and define the deviation variable : $\tilde{x}=x-x^{\star}$
Its dynamic is

$$
\dot{\tilde{x}}=\dot{x}=f(x)=f\left(x^{\star}+\tilde{x}\right), \quad \text { with } \tilde{x}(0)=x_{0}-x^{\star}
$$

Use Taylor series around x^{\star}

$$
f\left(x^{\star}+h\right)=f\left(x^{\star}\right)+f^{\prime}\left(x^{\star}\right) h+\frac{1}{2!} f^{\prime \prime}\left(x^{\star}\right) h^{2}+\frac{1}{3!} f^{(3)}\left(x^{\star}\right) h^{3}+\cdots
$$

valid if $h(=\tilde{x})$ small enough

Chapitre 1 : Introduction

Linear approximation (scalar case)

Chapitre 1 : Introducti Linearization

NSM
Linear approximation (general case)

$$
f\left(x^{\star}+h\right) \simeq \underbrace{f\left(x^{\star}\right)}_{=0}+f^{\prime}\left(x^{\star}\right) h+\frac{1}{2!} f^{\prime \prime}\left(x^{\star}\right) h^{2}+\frac{1}{3!} f^{(3)}\left(x^{\star}\right) h^{3}+. \%
$$

For our system

$$
\begin{aligned}
\dot{\tilde{x}} & =f\left(x^{\star}+\tilde{x}\right) \\
& \simeq f^{\prime}\left(x^{\star}\right) \tilde{x}
\end{aligned}
$$

\Rightarrow linear model of the form : $\quad \dot{\tilde{x}} \simeq a \tilde{x}, \quad$ with $\tilde{x}(0)=x_{0}-x^{\star}$
Let x^{\star} be an equilibrium point for system $\dot{x}=f(x)$, a linear model around that point is given by

$$
\dot{\tilde{x}} \simeq \underbrace{\frac{\partial f}{\partial x}\left(x^{\star}\right)}_{\Delta} \tilde{x} \quad \text { with } \tilde{x}=x-x^{\star}
$$

and $\frac{\partial f}{\partial x}(\cdot)$ the Jacobian matrix of the vector-valued function f at the equ. pt

- Reminder, Jacobian matrix :

$$
\frac{\partial f}{\partial x}(x)=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & & \vdots \\
\vdots & & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

- One could also linearize around an operating point or a trajectory

Back on the pendulum example
Nonlinear model :

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-\frac{g}{T} \sin x_{1}-\frac{k}{m} x_{2}
\end{array}\right]
$$

Consider the equilibrium pt $x^{\star}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}$

Linearization

Jacobian matrix

$$
\frac{\partial f}{\partial x}(x)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} \cos x_{1} & -\frac{k}{m}
\end{array}\right]
$$

Linear model

$$
\dot{\tilde{x}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{T} & -\frac{k}{m}
\end{array}\right] \tilde{x}
$$

Chapitre 1 : Introduction
Linearization

Chapitre 1: Introduction Case study
Sommaire

(1) Nonlinear models?

Calculate the equilibrium point(s) ? Linearize the system around (1,1)

๑ Existence of a solution
© Equilibrium point
© Linearization
© Case study

Case study

Population dynamics study the evolution of the size $N(t)$ of a population
First simple model : Malthus model

$$
\dot{N}(t)=\alpha N(t)-\beta N(t)
$$

α is the birth rate and β the death rate

- Model is linear are nonlinear?
- What is (are) the equilibrium point(s) ?
- Existence and unicity of the solution ?

Chapitre 1 : Introduction

INSA
Second case

Second model : Verhulst (or logistic) model

$$
\dot{N}(t)=r N(t)\left(1-\frac{N(t)}{K}\right)
$$

that takes into account a maximal critical size of the population K (carrying capacity). r is the growth rate

Model is linear are nonlinear?

- What is (are) the equilibrium point(s) ?
- Existence and unicity of the solution?

	INSAT

- Nonlinear model are very general model

$$
\dot{x}=f(x)
$$

Results for linear model $\dot{x}=A x$ not applicable

- A solution exists and is unique if a Lipschitz condition is satisfied.
- The equilibrium points x^{*} are given by the roots of

$$
f(x)=0
$$

- A nonlinear system may be approximated by a linear system around an equilibrium point

$$
\text { with } x=x^{*}+\delta x \text { and } A=\frac{\partial f}{\partial x}\left(x^{*}\right)
$$

