4AESE - Analyse des Systèmes Non-Linéaires

Chapitre 2 : Phase Plane

Yassine ARIBA

version : 9-2023

Chapitre 2: Phase Plane └─Introduction and definitions

Sommaire

- Introduction and definitions
- Construction of phase portrait
- 3 Linear systems case
- 4 Closed orbits
- Case study

Chapitre 2 : Phase Plane

Sommaire

- Introduction and definitions
- Construction of phase portrait
- 6 Linear systems case
- Closed orbits
- **6** Case study

/ 51

Chapitre 2 : Phase Plane

☐Introduction and definitions

Second-order systems

In general, one can not find solution x(t) of a nonlinear system

Some techniques exist to draw x(t) for second-order system in a plane

$$\dot{x} = f(x) \quad \equiv \quad \left\{ \begin{array}{l} \dot{x}_1 = f_1(x_1, x_2) \\ \dot{x}_2 = f_2(x_1, x_2) \end{array} \right. \quad \text{with } x(0) = x_0 = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$$

 $\hookrightarrow \textbf{Phase plane}$

└─Introduction and definitions

Definitions

Trajectory or orbit

The curve of x(t) in the x_1-x_2 plane is called a *trajectory* or *orbit* of the system from the point x_0 .

Phase portrait

The *phase portrait* of the system is the set of all trajectories for different initial conditions x_0 .

Vector field

The vector field is the representation, in the x_1-x_2 plane, of the vector $f(x)=\Big(f_1(x_1,x_2)\,,\,f_2(x_1,x_2)\Big)$. It is drawn with arrows.

5 / 51

Chapitre 2 : Phase Plane

Introduction and definitions

Vector field

The vector $f(x) = (f_1(x), f_2(x))$ is tangent to the trajectory at point x

$$\frac{dx_2}{dx_1} = \frac{f_1(x)}{f_2(x)}$$

Chapitre 2 : Phase Plane

Introduction and definitions

Vector field

The vector $f(x) = \left(f_1(x), f_2(x)\right)$ is tangent to the trajectory at point x

$$\frac{dx_2}{dx_1} = \frac{f_1(x)}{f_2(x)}$$

6 / 51

Chapitre 2 : Phase Plane

└─Introduction and definitions

Pendulum example

Variables : $x_1 = \theta$ and $x_2 = \dot{\theta}$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}$$

Construction of phase portrait

Construction of phase portrait

Several techniques exist to draw trajectories on the phase plane

Two will be presented here :

- ▶ analytical method solve the differential equations
- ▶ isoclines method graphical method
- ♦ But nowadays numerical computing softwares are used (MATLAB, Scilab, Python)

Chapitre 2 : Phase Plane

Construction of phase portrait

Sommaire

- Introduction and definitions
- Construction of phase portrait
- 3 Linear systems case
- Closed orbits
- **6** Case study

9 / 5

Chapitre 2 : Phase Plane

Construction of phase portrait

Analytical method

The objective is to get a relationship between x_1 and x_2

$$g(x_1, x_2) = 0$$

First approach : solve the state equation

$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2) \\ \dot{x}_2 = f_2(x_1, x_2) \end{cases} \Rightarrow \begin{cases} x_1 = g_1(t) \\ x_2 = g_2(t) \end{cases}$$

Eliminate the time t between the two parametric curves

► Second approach : Eliminate the time t first

$$\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}$$

Solve the new differential equation (with separated variables)

♦ Theses methods are restricted to quite simple/particular nonlinearities

Construction of phase portrait

Example

Consider the system

$$\left\{ \begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_2 x_1^2 \end{array} \right. \qquad \text{with} \quad x_0 = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$$

- $lackbox{ Equilibrium points}: x_1^* \in \mathbb{R} \text{ and } x_2^* = 0 \ \Rightarrow \ x_1 ext{-axis}$
- ► Analytical resolution :

$$x_2 = -\frac{1}{3}x_1^3 + \underbrace{x_{20} + \frac{1}{3}x_{10}^3}_{\cdot}$$

► Sketch and simulation

Chapitre 2 : Phase Plane

Construction of phase portrait

Example

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1^2 \end{cases}$$

$$\left\{ \begin{array}{ll} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1^2 \end{array} \right. \qquad \text{slope}: \quad \alpha = \frac{f_2(x)}{f_1(x)} = \frac{-x_1^2}{x_2} \quad \Leftrightarrow \quad x_2 = -\frac{1}{\alpha}x_1^2$$

Plot for $\alpha = \{-5, -2, -1, -0.1, 0.1, 1, 2, 5\}$

Chapitre 2: Phase Plane

Construction of phase portrait

Isoclines method

Isocline = locus in the phase plane of trajectory's points of given slope α

$$s(x_1, x_2) = \alpha = \frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}$$

Step:

- For a given α , draw the curve such that $s(x_1, x_2) = \alpha$
- \blacktriangleright Along the curve, draw small segments of slope α
- **Each** segment is tangent to a trajectory, the direction s given by sign of $f_1(x)$ and
- \blacktriangleright Repeat from first step to draw several isoclines, for different α
- \triangleright Then, from a given initial condition x_0 , sketch a solution joining segments
- ♦ Also restricted to quite simple/particular nonlinearities

Chapitre 2 : Phase Plane

Construction of phase portrait

Exercise (analytical method)

Consider the simple control of a simple satellite model

- ► Write the state space model
- ► What is (are) the the equilibrium point(s)?
- \triangleright Express x_1 as a function of x_2
- Draw a sketch of the phase portrait.

Chapitre 2: Phase Plane
Construction of phase portrait
Solution:

Exercise (isocline method)

Consider the previous (controlled) system

Apply the isocline method to retrieve the phase portrait

Solution:

Chapitre 2 : Phase Plane

Construction of phase portrait

Chapitre 2 : Phase Plane └─Linear systems case

Sommaire

- Introduction and definitions
- Construction of phase portrait
- Linear systems case
- Closed orbits
- 6 Case study

20 / 51

Chapitre 2 : Phase Plane └─Linear systems case

Case 1 : real distinct eigenvalues

Two eigenvalues : $\lambda_1
eq \lambda_2
eq 0$

- lacktriangle Change of basis matrix $M=[v_1,v_2]$ made of the eigenvectors
- ► Give two decoupled first-order differential equation

$$\left\{\begin{array}{l} \dot{z}_1 = \lambda_1 \ z_1 \\ \dot{z}_2 = \lambda_2 \ z_2 \end{array}\right. \Rightarrow \left\{\begin{array}{l} z_1(t) = z_{10} \ e^{\lambda_1 t} \\ z_2(t) = z_{20} \ e^{\lambda_2 t} \end{array}\right.$$

► Eliminate the time t

$$z_2=c~z_1^{\lambda_2/\lambda_1}$$
 with $c=rac{z_{20}}{z_{10}^{\lambda_2/\lambda_1}}$

Chapitre 2: Phase Plane

Linear systems case

What about linear systems?

Autonomous linear system :

$$\begin{cases} \dot{x}_1 = a_{11} x_1 + a_{12} x_2 \\ \dot{x}_2 = a_{21} x_1 + a_{22} x_2 \end{cases} \Leftrightarrow \dot{x} = Ax$$

- Solution $x(t) = e^{At}x_0$
- ▶ Jordan canonical form with a change of basis : Mz = x

Simpler system :
$$\dot{z} = \underbrace{M^{-1}AM}_{t}z$$
 \Rightarrow Solution : $z(t) = e^{Jt}z_0$

 \blacktriangleright According to eigenvalues of $A \rightarrow$ different forms for J

$$\begin{bmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{bmatrix} \qquad \begin{bmatrix} \lambda & k \\ \mathbf{0} & \lambda \end{bmatrix} \qquad \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$$

 $(k = 0 \text{ or } 1) / (\text{if an eigenvalue} \equiv 0 \rightarrow \text{specific study})$

21 / 5

Chapitre 2 : Phase Plane

Linear systems case

The shape of the curves depends on signs of λ_1 and λ_2

► Same signs ⇒ the equilibrium point is a **stable** or **unstable node**

▶ Opposite signs ⇒ the equilibrium point is a saddle point

Linear systems case

Back in the x-coordinates basis x = Mz

► Same signs ⇒ the equilibrium point is a **stable** or **unstable node**

▶ Opposite signs ⇒ the equilibrium point is a saddle point

24 / 51

Chapitre 2: Phase Plane

Linear systems case

Again, the shape of the curves depends on sign of λ • negative \Rightarrow the equilibrium point is a **stable node**

▶ positive ⇒ the equilibrium point is an unstable node

Chapitre 2 : Phase Plane

Linear systems case

Case 2 : real identical eigenvalues

Two eigenvalues : $\lambda_1 = \lambda_2 = \lambda \neq 0$

- ▶ Change of basis matrix x = Mz (eigenvectors or chain of eigenvect.)
- ► Give two first-order differential equation

$$\left\{\begin{array}{l} \dot{z}_1 = \lambda \, z_1 + k \, z_2 \\ \dot{z}_2 = \lambda \, z_2 \end{array}\right. \Rightarrow \left\{\begin{array}{l} z_1(t) = \left(z_{10} + k z_{20} t\right) e^{\lambda t} \\ z_2(t) = z_{20} \, e^{\lambda t} \end{array}\right.$$

- If k = 0, particular case of the previous one
- ► Eliminate the time t

$$z_1=z_2\left(rac{z_{10}}{z_{20}}+rac{k}{\lambda}\ln\left(rac{z_2}{z_{20}}
ight)
ight)$$
 and also $rac{dz_2}{dz_1}=rac{\lambda z_2}{\lambda z_1+kz_2}$

25 / 51

Chapitre 2 : Phase Plane

Linear systems case

Case 3: complex conjugate eigenvalues

Two eigenvalues : $\lambda_{1,2} = \alpha \pm j\beta$

- \rightarrow Two complex conj. eigenvectors v_1 and $v_2 = \bar{v}_1$
- ▶ Change of basis matrix with $M = \left[\mathsf{R}_{\mathsf{e}}[\mathsf{v}_1] \; , \; \mathsf{I}_m[\mathsf{v}_1] \right]$

$$\begin{cases} \dot{z}_1 = \alpha z_1 + \beta z_2 \\ \dot{z}_2 = -\beta z_1 + \alpha z_2 \end{cases}$$

► Change of variable \rightarrow polar coordinates : $z_1 = r \cos \theta$ and $z_2 = r \sin \theta$

$$\begin{cases} \dot{r} = \alpha \, r \\ \dot{\theta} = -\beta \end{cases}$$

► that has for solution

$$\left\{ \begin{array}{l} r(t) = r_0 \ e^{\alpha \ t} \\ \theta(t) = -\beta \ t + \theta_0 \end{array} \right. \qquad \text{with} \qquad \left\{ \begin{array}{l} r_0 = \sqrt{z_{10}^2 + z_{20}^2} \\ \theta_0 = \arctan \frac{z_{20}}{z_{10}} \end{array} \right.$$

Linear systems case

The shape of the curves depends on signs of $\alpha = R_e[\lambda]$

▶ negative or positive real part ⇒ the equ. pt is a **stable** or **unstable focus**

▶ Pure imaginary \Rightarrow the equilibrium point is a **center** (circle of radius r_0)

Chapitre 2 : Phase Plane

Linear systems case

Case 4 (degenerate): one or both eigenvalues are zero

Matrix A is singular \rightarrow an equilibrium subspace (infinitely many points)

First case : $\lambda_1 = 0$ and $\lambda_2 \neq 0$

► Change of basis gives

$$\left\{\begin{array}{l} \dot{z}_1=0\\ \dot{z}_2=\lambda_2\,z_2 \end{array}\right. \Rightarrow \left\{\begin{array}{l} z_1(t)=z_{10}\\ z_2(t)=z_{20}\,\mathrm{e}^{\lambda_2 t} \end{array}\right.$$

ightharpoonup if $\lambda_2 < 0$, trajectories converge, and if $\lambda_2 > 0$, they diverge

Second case : $\lambda_1 = \lambda_2 = 0$

► Change of basis gives

$$\begin{cases} \dot{z}_1 = z_2 \\ \dot{z}_2 = 0 \end{cases} \Rightarrow \begin{cases} z_1(t) = z_{10} + z_{20}t \\ z_2(t) = z_{20} \end{cases}$$

 \triangleright z_1 increases or decreases depending on the sign of z_{20}

Chapitre 2 : Phase Plane

Linear systems case

Back in the x-coordinates basis : x = Mz

▶ Pure imaginary \Rightarrow the equilibrium point is a center (circle of radius r_0)

INSA

Chapitre 2 : Phase Plane

Linear systems case

First case, $\lambda_1=0$ and $\lambda_2\neq 0$ (below $\lambda_2<0$)

ightharpoonup Second case, $\lambda_1 = \lambda_2 = 0$

Chapitre 2 : Phase Plane

Linear systems case

Linear systems case

Recap

Qualitative behavior for linear systems around the isolated equilibrium x=0

- ► Real eigenvalues
 - λ_1 and λ_2 positive \Rightarrow unstable node
 - λ_1 and λ_2 negative \Rightarrow stable node
 - λ_1 and λ_2 opposite \Rightarrow saddle point
- ► Complex conjugate eigenvalues
 - real part $\alpha > 0 \Rightarrow$ unstable focus
 - real part $\alpha < 0 \Rightarrow$ stable focus
 - real part $\alpha = 0 \Rightarrow$ center

Behavior determined by the eigenvalues of A

- ▶ Determined for the whole plane (global), characteristic of linear systems
- For nonlinear systems, study interesting to get the local behavior around an equilibrium point

 $x_1 = x$

INSA

Chapitre 2: Phase Plane

Linear systems case

Example: simple mass-spring system

Equation of motion :

mass
$$(m=1 kg)$$

spring (stiffness:
$$k = 1 N/m$$
)

damper (viscous coefficient c N/m/s)

$$\ddot{x} + c\dot{x} + x = 0$$

$$\ddot{x} + c\dot{x} + x = 0$$
 \Rightarrow $\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -c \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$ with $\begin{cases} x(0) = x_0 \\ \dot{x}(0) = 0 \end{cases}$

with
$$\begin{cases} x(0) = x_0 \\ \dot{x}(0) = 0 \end{cases}$$

Eigenvalues of the dynamic matrix

$$\geq 2$$

$$\lambda_{1/2} = \frac{-c \pm \sqrt{c^2 - 4}}{2}$$

noeud stable

$$\lambda_{1/2} = -\frac{c}{c} + i \frac{\sqrt{|c^2 - 4|}}{\sqrt{|c^2 - 4|}}$$

foyer stable

$$c = 0$$

$$\lambda_{1/2} = \pm i$$

Chapitre 2 : Phase Plane

Linear systems case

Exercise 1

Consider the system

$$\dot{x} = \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix} x$$
 with $x_0 = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$

- ▶ What is the qualitative behavior of the equilibrium point 0?
- ▶ What is the representation of the system in the z-coordinates?
- ▶ Draw a sketch of the phase portrait in z and x-coordinates.

Chapitre 2: Phase Plane
Linear systems case
Solution:

Chapitre 2 : Phase Plane └─Linear systems case

INSA

Exercise 2

Consider the system

$$\dot{x} = \begin{bmatrix} 1 & -1 \\ 9 & 1 \end{bmatrix} x$$
 with $x_0 = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$

- ► What is the qualitative behavior of the equilibrium point 0?
- ▶ What is the representation of the system in the z-coordinates?
- ► Draw a sketch of the phase portrait in z-coordinates.

37 / 51

Chapitre 2 : Phase Plane Linear systems case

Solution :

Chapitre 2 : Phase Plane └─ Closed orbits

Sommaire

- Introduction and definitions
- Construction of phase portrait
- 3 Linear systems case
- Closed orbits
- **6** Case study

38 /

Closed orbits

Closed orbits

A closed orbit is a periodic trajectory

Two cases can be distinguished:

- ▶ non-isolated : there are other closed curves in the neighborhood, depend on initial conditions (left)
- ▶ isolated : from initial conditions in the neighborhood, trajectories converge or diverge from it \rightarrow limit cycle (right)

Chapitre 2 : Phase Plane

Closed orbits

Limit cycles

can be observed

Stable limit cycle

Three kinds of limit cycle

Unstable limit cycle

Semi-stable limit cycle

41 / 51

Chapitre 2 : Phase Plane

└ Closed orbits

Existence of limit cycles

Can we predict the existence of a limit cycle?

3 theorems are stated that may help (valid only for 2nd order autonomous systems)

Theorem (Poincaré)

If a closed orbit exists, then N = S + 1, with

- N, the number of nodes/centers/foci enclosed by the closed orbit
- S, the number of saddle points enclosed by the closed orbit
 - \hookrightarrow A closed orbit must enclose at least one equilibrium point

Theorem (Poincaré-Bendixson)

If a trajectory remains in a closed bounded region $\mathcal D$ in the phase plane, then one of the following is true:

- the trajectory goes to an equilibrium
- the trajectory tends to a closed orbit
- the trajectory is itself a closed orbit

→ Asymptotic properties of trajectories

Chapitre 2 : Phase Plane └ Closed orbits

These results can be easily verified on previous examples

$$\begin{cases} \dot{x}_1 = 4 - 2x_2 \\ \dot{x}_2 = 12 - 3x_2^2 \end{cases}$$

$$\dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1)$$

$$\dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1)$$

Closed orbits

Non-existence condition

This last theorem provides a sufficient condition for the non-existence of a limit cycle

Theorem (Bendixson)

No limit cycle can exist in a region $\mathcal D$ of the phase plane in which

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$$

does not vanish and does not change sign

Example:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -ax_1(1 - bx_1^2) - cx_2 \end{cases}$$

with positive paramters a, b, c > 0

Let's apply formula

$$\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = 0 - c$$

 $\hookrightarrow \neq 0$ and no change of sign \Rightarrow no limit cycle

Chapitre 2 : Phase Plane

└ Case study

Case study

Prey-Predator model (or Lotka-Volterra model)

study the evolution of two populations x_1 (preys) and x_2 (predators)

$$\begin{cases} \dot{x}_1 = \alpha x_1 - \beta x_1 x_2 \\ \dot{x}_2 = \gamma x_2 x_1 - \delta x_2 \end{cases}$$

 α , β , γ and δ are positive constant parameters

- \triangleright αx_1 is the growth rate of preys if there is no predators
- \triangleright $\beta x_1 x_2$ is the death rate of preys because of predators
- $ightharpoonup \gamma x_2x_1$ is the growth rate of predators with x_1 preys available
- \triangleright δx_2 is the death rate of predators

To simplify, let's set $\alpha = \beta = \gamma = \delta = 1$

Chapitre 2 : Phase Plane

Case study

Sommaire

- Introduction and definitions
- Construction of phase portrait
- 6 Linear systems case
- Closed orbits
- Case study

45 / 51

Chapitre 2 : Phase Plane └ Case study

Model:

$$\begin{cases} \dot{x}_1 = x_1(1 - x_2) \\ \dot{x}_2 = x_2(x_1 - 1) \end{cases}$$

- ► What is (are) the equilibrium point(s)?
- ► Calculate the linearized model around it (them).
- ▶ What is (are) their nature? Then, how heights will evolve?
- ► Simulate the system to draw the phase portrait.

Chapitre 2 : Phase Plane
Case study

Solution

Chapitre 2: Phase Plane
Case study

Solution

Chapitre 2: Phase Plane
LIn short

In short

Chapitre 2: Phase Plane

- Phase plane: study of the time evolution of the state for second order systems \hookrightarrow trajectories of $x=(x_1,x_2)$ in the place and vector field
- ► Usually, numerical software are used to simulate system responses
 - \hookrightarrow with MATLAB, Scilab, Python... or your own program implementing numerical methods
- ▶ In the linear case, analytical solutions can be found and the nature of equilibrium point can be derived from eigenvalues
 - \hookrightarrow node, saddle point, focus, center, stable/unstable
- Useful when linearizing nonlinear systems to have the local behavior (around an equilibrium point)

50 / 51