

Chapitre 2 : Phase Plane

Sommaire

(1) Introduction and definitions
(2) Construction of phase portrait

3 Linear systems case
(4) Closed orbits
© Case study

Second-order systems
Sommaire
In general, one can not find solution $x(t)$ of a nonlinear system
Some techniques exist to draw $x(t)$ for second-order system in a plane
(1) Introduction and definitions

$$
\dot{x}=f(x) \equiv\left\{\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
\dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{array} \quad \text { with } x(0)=x_{0}=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]\right.
$$

\hookrightarrow Phase plane

Trajectory or orbit

The curve of $x(t)$ in the $x_{1}-x_{2}$ plane is called a trajectory or orbit of the system from the point x_{0}.

Phase portrait

The phase portrait of the system is the set of all trajectories for different initia conditions x_{0}.

Vector field
The vector field is the representation, in the $x_{1}-x_{2}$ plane, of the vector
$f(x)=\left(f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)\right)$. It is drawn with arrows.
The vector $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ is tangent to the trajectory at point x
on

$$
\frac{d x_{2}}{d x_{1}}=\frac{f_{1}(x)}{f_{2}(x)}
$$

Chapitre 2: Phase Plane

Vector field

Construction of phase portrait

Several techniques exist to draw trajectories on the phase plane
Two will be presented here

- analytical method - solve the differential equations
- isoclines method - graphical method
\diamond But nowadays numerical computing softwares are used (MATLAB, Scilab, Python)

Sommaire

(1) Introduction and definitions
(2) Construction of phase portrait
(3) Linear systems case
(4) Closed orbits
(5) Case study

Chapitre 2: Phase Plane Construction of phase portrait

Analytical method
The objective is to get a relationship between x_{1} and x_{2}

$$
g\left(x_{1}, x_{2}\right)=0
$$

- First approach : solve the state equation

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = f _ { 1 } (x _ { 1 } , x _ { 2 }) } \\
{ \dot { x } _ { 2 } = f _ { 2 } (x _ { 1 } , x _ { 2 }) }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
x_{1}=g_{1}(t) \\
x_{2}=g_{2}(t)
\end{array}\right.\right.
$$

Eliminate the time t between the two parametric curves

- Second approach : Eliminate the time t first

$$
\frac{d x_{2}}{d x_{1}}=\frac{f_{2}\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}, x_{2}\right)}
$$

Solve the new differential equation (with separated variables)
\diamond Theses methods are restricted to quite simple/particular nonlinearities

Example
Isoclines method
Consider the system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{2} x_{1}^{2}
\end{array} \quad \text { with } \quad x_{0}=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]\right.
$$

- Equilibrium points : $x_{1}^{*} \in \mathbb{R}$ and $x_{2}^{*}=0 \Rightarrow x_{1}$-axis
- Analytical resolution

$$
x_{2}=-\frac{1}{3} x_{1}^{3}+\underbrace{x_{20}+\frac{1}{3} x_{10}^{3}}_{\text {cst }}
$$

- Sketch and simulation

Chapitre 2: Phase Plane Construction of phase portrait

Example

Exercise (analytical method)

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}^{2}
\end{array} \quad \text { slope }: \quad \alpha=\frac{f_{2}(x)}{f_{1}(x)}=\frac{-x_{1}^{2}}{x_{2}} \quad \Leftrightarrow \quad x_{2}=-\frac{1}{\alpha} x_{1}^{2}\right.
$$

[^0]| Chapitre 2 : Phase Plane LConstruction of phase portrait Solution : | INSA |
| :---: | :---: |
| Solution : | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | 16/51 |

Exercise (isocline method)
Consider the previous (controlled) system

- Apply the isocline method to retrieve the phase portrait

Solution :

Numerical simulations
General steps with MATLAB
Resulting plot for several x_{0}

- Define the system (function f) with a MATLAB function or Simulink

$[\mathrm{t}, \mathrm{x}]=\operatorname{ode45(f,[020],x0)}$;
$[t, x]=$ ode45
$x 1=x(:, 1) ;$
$x 2=x(:, 2)$;
plot $(x 1, \times 2) ;$
plot $\left(x 1(1), \times 2(2),{ }^{\prime}\right)$);

- Select an initial point x_{0}
- Solve the differential equation $\dot{x}=f(x)$

Repeat from step 2
In MATLAB, the instruction quiver plots the vector field

Sommaire

(1) Introduction and definitions

What about linear systems?
Autonomous linear system :

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a_{11} x_{1}+a_{12} x_{2} \\
\dot{x}_{2}=a_{21} x_{1}+a_{22} x_{2}
\end{array} \quad \Leftrightarrow \quad \dot{x}=A x\right.
$$

- Solution : $x(t)=e^{A t} x_{0}$
(2) Construction of phase portrait
- Jordan canonical form with a change of basis: $M z=x$

$$
\text { Simpler system : } \dot{z}=\underbrace{M^{-1} A M}_{J} z \quad \Rightarrow \quad \text { Solution: } \quad z(t)=e^{J t} z_{0}
$$

According to eigenvalues of $A \rightarrow$ different forms for J
$\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$
$\left[\begin{array}{ll}\lambda & k \\ 0 & \lambda\end{array}\right]$
$\left[\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right]$
($k=0$ or 1) / (if an eigenvalue $=0 \rightarrow$ specific study)

Chapitre 2 : Phase Plane
Linear systems case

Chapitre 2 : Phase Plan

The shape of the curves depends on signs of λ_{1} and λ_{2}

- Same signs \Rightarrow the equilibrium point is a stable or unstable node

- Opposite signs \Rightarrow the equilibrium point is a saddle point
hapitre 2 : Phase Plane
INS
Back in the x-coordinates basis : $x=M z$

Case 2 : real identical eigenvalues
Same signs \Rightarrow the equilibrium point is a stable or unstable node

- Opposite signs \Rightarrow the equilibrium point is a saddle point

Two eigenvalues : $\lambda_{1}=\lambda_{2}=\lambda \neq 0$

Change of basis matrix $x=M z$ (eigenvectors or chain of eigenvect.)

Give two first-order differential equation

$$
\left\{\begin{array} { l }
{ \dot { z } _ { 1 } = \lambda z _ { 1 } + k z _ { 2 } } \\
{ \dot { z } _ { 2 } = \lambda z _ { 2 } }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{l}
z_{1}(t)=\left(z_{10}+k z_{20} t\right) e^{\lambda t} \\
z_{2}(t)=z_{20} e^{\lambda t}
\end{array}\right.\right.
$$

- If $k=0$, particular case of the previous one
- Eliminate the time t

$$
z_{1}=z_{2}\left(\frac{z_{10}}{z_{20}}+\frac{k}{\lambda} \ln \left(\frac{z_{2}}{z_{20}}\right)\right) \quad \text { and also } \quad \frac{d z_{2}}{d z_{1}}=\frac{\lambda z_{2}}{\lambda z_{1}+k z_{2}}
$$

Chapitre 2 : Phase Plane

Again, the shape of the curves depends on sign of λ
Case 3 : complex conjugate eigenvalues
Two eigenvalues : $\lambda_{1,2}=\alpha \pm j \beta$
\rightarrow Two complex conj. eigenvectors v_{1} and $v_{2}=\bar{v}_{1}$

- Change of basis matrix with $M=\left[\mathrm{R}_{e}\left[\mathrm{v}_{1}\right], \mathrm{I}_{m}\left[\mathrm{v}_{1}\right]\right]$

$$
\left\{\begin{array}{l}
\dot{z}_{1}=\alpha z_{1}+\beta z_{2} \\
\dot{z}_{2}=-\beta z_{1}+\alpha z_{2}
\end{array}\right.
$$

- Change of variable \rightarrow polar coordinates : $z_{1}=r \cos \theta$ and $z_{2}=r \sin \theta$

$$
\left\{\begin{array}{l}
\dot{r}=\alpha r \\
\dot{\theta}=-\beta
\end{array}\right.
$$

- that has for solution

$$
\left\{\begin{array} { l }
{ r (t) = r _ { 0 } e ^ { \alpha t } } \\
{ \theta (t) = - \beta t + \theta _ { 0 } }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
r_{0}=\sqrt{z_{10}^{2}+z_{20}^{2}} \\
\theta_{0}=\arctan \frac{z_{20}}{z_{10}}
\end{array}\right.\right.
$$

Back in the x-coordinates basis : $x=M z$

- negative or positive real part \Rightarrow the equ. pt is a stable or unstable focus
- negative or positive real part \Rightarrow the equ. pt is a stable or unstable focus

- Pure imaginary \Rightarrow the equilibrium point is a center (circle of radius r_{0})

$\left\llcorner_{\text {Linear systems case }}\right.$
- First case, $\lambda_{1}=0$ and $\lambda_{2} \neq 0$ (below $\lambda_{2}<0$)

Second case, $\lambda_{1}=\lambda_{2}=0$

Recap

Qualitative behavior for linear systems around the isolated equilibrium $x=0$

- Real eigenvalues
- λ_{1} and λ_{2} positive \Rightarrow unstable node
- λ_{1} and λ_{2} negative \Rightarrow stable node
- λ_{1} and λ_{2} opposite \Rightarrow saddle point
- Complex conjugate eigenvalues
- real part $\alpha>0 \Rightarrow$ unstable focus
- real part $\alpha<0 \Rightarrow$ stable focu
- real part $\alpha=0 \Rightarrow$ center

Behavior determined by the eigenvalues of A

- Determined for the whole plane (global), characteristic of linear systems

For nonlinear systems, study interesting to get the local behavior around an equilibrium point

Example : simple mass-spring system
Equation of motion
mass ($m=1 \mathrm{~kg}$)
spring (stiffness: $k=1 \mathrm{~N} / \mathrm{m}$)
damper (viscous coefficient: c $\mathrm{N} / \mathrm{m} / \mathrm{s}$)

$$
\ddot{x}+c \dot{x}+x=0 \quad \Rightarrow \quad\left[\begin{array}{l}
\dot{x} \\
\ddot{x}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -c
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x}
\end{array}\right] \quad \text { with }\left\{\begin{array}{l}
x(0)=x_{0} \\
\dot{x}(0)=0
\end{array}\right.
$$

Eigenvalues of the dynamic matrix

$$
\begin{array}{c|c|c}
c \geq 2 & 0<c<2 & c=0 \\
\lambda_{1 / 2}=\frac{-c \pm \sqrt{c^{2}-4}}{2} & \lambda_{1 / 2}=-\frac{c}{2} \pm i \frac{\sqrt{\left|c^{2}-4\right|}}{2} & \begin{array}{l}
\lambda_{1 / 2}= \pm i \\
\text { noeud stable }
\end{array} \\
\text { foyer stable } & \text { centre }
\end{array}
$$

Chapitre 2 : Phase Plane
Linear systems case
Simulation of the mass-spring system
Chapitre $2:$ Phase Plane
Linear systems case
INSA!
Exercise 1

Consider the system

$$
\dot{x}=\left[\begin{array}{cc}
-2 & 2 \\
1 & -3
\end{array}\right] x \quad \text { with } \quad x_{0}=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]
$$

- What is the qualitative behavior of the equilibrium point 0 ?

What is the representation of the system in the z-coordinates?

- Draw a sketch of the phase portrait in z and x-coordinates.

Consider the system

$$
\dot{x}=\left[\begin{array}{cc}
1 & -1 \\
9 & 1
\end{array}\right] x \quad \text { with } \quad x_{0}=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]
$$

What is the qualitative behavior of the equilibrium point 0 ?
What is the representation of the system in the z -coordinates?

- Draw a sketch of the phase portrait in z-coordinates.

Chapitre 2: Phase Plane $\quad\llcorner$ Linear systems case Solution :	

Chapitre 2: Phase Plane
Closed orbits
Sommaire
(1) Introduction and definitions
(3) Construction of phase portrait
(4) Closed orbits
(3) Case study
(3) systems case

Closed orbits
A closed orbit is a periodic trajectory
Two cases can be distinguished
Limit cycles
Stable limit cycle

Semi-stable limit cycle

Chapitre 2: Phase Plane Lclosed orbite

INSAI
Three kinds of limit cycle can be observed
non-isolated : there are other closed curves in the neighborhood, depend on an initial conditions (left)

- isolated : from initial conditions in the neighborhood, trajectories converge or diverge from it \rightarrow limit cycle (right)

Unstable limit cycle

Existence of limit cycles

Can we predict the existence of a limit cycle ?
3 theorems are stated that may help (valid only for $2^{\text {nd }}$ order autonomous systems)

Theorem (Poincaré)

If a closed orbit exists, then $N=S+1$, with
N, the number of nodes/centers/foci enclosed by the closed orbit
S, the number of saddle points enclosed by the closed orbit
$\hookrightarrow \mathrm{A}$ closed orbit must enclose at least one equilibrium point

Theorem (Poincaré-Bendixson)

If a trajectory remains in a closed bounded region \mathcal{D} in the phase plane, then one of the following is true
the trajectory goes to an equilibrium
the trajectory tends to a closed orbit
the trajectory is itself a closed orbit
\hookrightarrow Asymptotic properties of trajectories

Non-existence condition

This last theorem provides a sufficient condition for the non-existence of a limit cycle

Sommaire

```
(1) Introduction and definitions
(2) Construction of phase portrait
(3) Linear systems case
(4) Closed orbits
(5) Case study
```


Chapitre 2 : Phase Plane

-Case study
Chapitre 2 : Phase Plane
Case study
INSA
Case study

Model

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{1}\left(1-x_{2}\right) \\
\dot{x}_{2}=x_{2}\left(x_{1}-1\right)
\end{array}\right.
$$

What is (are) the equilibrium point(s) ?

- Calculate the linearized model around it (them).
- What is (are) their nature? Then, how heights will evolve?

Simulate the system to draw the phase portrait.

- $\gamma x_{2} x_{1}$ is the growth rate of predators with x_{1} preys available
- δx_{2} is the death rate of predators

To simplify, let's set $\alpha=\beta=\gamma=\delta=1$

Chapitre 2: Phase Plane - Case study	INSAI
	$48 / 51$

Chapitre 2: Phase Plane
-Case study
Solution

In short

- Phase plane : study of the time evolution of the state for second order systems
\hookrightarrow trajectories of $x=\left(x_{1}, x_{2}\right)$ in the place and vector field
- Usually, numerical software are used to simulate system responses
\hookrightarrow with MATLAB, Scilab, Python... or your own program implementing numerical methods
- In the linear case, analytical solutions can be found and the nature of equilibrium point can be derived from eigenvalues
\hookrightarrow node, saddle point, focus, center, stable/unstable
- Useful when linearizing nonlinear systems to have the local behavior (around an equilibrium point

[^0]: Plot for $\alpha=\{-5,-2,-1,-0.1,0.1,1,2,5$

