
Object-Oriented 
Programming

Frédéric Boisguérin
fboisgue@insa-toulouse.fr



Outline

1. Introduction
2. Pragmatic programming
3. User interaction
4. Concurrent programming
5. Network programming



Introduction
“Object-Orientation is a dimension orthogonal to
the imperative/logic/functional dimension.”

Martin Odersky



OO is not only

A bag of solutions and technology



...But it is

A way to understand, describe and communicate

about a domain 

and a concrete implementation of that domain. 



What does Object mean?

State

Behavior



Imperative style

⇒ Lack of semantic about what is a sheet of paper.
The height and the width are properties of a same object, but it does not appears clearly...



OOP style

⇒ Both data and process are encapsulated 
in the SheetOfPaper class



The joy of OO programming

OO ⇒ no boring mathematical laws, no esoteric terms (like in OCaml or Prolog)

Everyone can study and learn an object oriented programming language

As human beings living in the lucky part of the world, we understand what a Car 
type means and why it owns attributes of type Engine, Wheel and Body.



Simplicity often leads to tradeoffs...

Simpler ⇒ less constrained ⇒ less formality

The more a programming language is easy to learn,
the easier it is to make mistakes using it



Different kind of “objects”

Values

● Model unchanging quantities and 
measurements

● Equal to others by their state, not identity
● No “setters”

Objects

● Have an identity
● Might change state over time
● Model computational processes

No difference in Java
(but in Kotlin, for example)



The core of OO
Encapsulation, abstraction, inheritance, polymorphism



Encapsulation and information hiding



Encapsulation and information hiding

Encapsulation

Ensures that the behavior of an object can only 
be affected through its API.

It lets us control how much a change to one 
object will impact other parts of the system by 
ensuring that there are no unexpected 
dependencies between unrelated components.

Information hiding

Conceals how an object implements its 
functionality behind the abstraction of its API.

It lets us work with higher abstractions by 
ignoring lower-level details that are unrelated to 
the task at hand.



Tell, Don’t Ask...



Tell, Don’t Ask...



...But sometimes ask



...But sometimes ask



Why ?

● Client/user perspective : interest for what a program does, not how
● Do not give the details ⇒ well structured code

How ?

● Naming
● Separation of concerns

Encapsulation and data hiding lead us to 
Abstraction



Inheritance (concrete class)

<< extends >>
<< extends >>



Inheritance (abstract class)

Sometimes the parent class 
is not very concrete...

<< extends >> << extends >>



Different kinds of inheritance

A

B

Single

A

B

C

Multi level

A

B C D

Hierarchical

A B

C

Multiple
⇒ not allowed in Java



Interfaces

Tent Camping car
???

Car



Interfaces



Java syntax

● Keywords
○ Visibility : public / protected / private
○ void
○ null
○ Modifiers : static, final

● Flow control (if, for, while, do…)
● Boolean expressions (||, &&, ==, equals()...)
● Variable types : primitives (int, double, byte) vs. references

Question: [new String("hello")] == [new String("hello")] ?



Model data

● Native arrays (double[], Object[]...)
● API Collections

○ List : ArrayList, LinkedList, Stack…
○ Map : HashMap*, TreeMap…
○ Set : HashSet*, TreeSet…

* hashCode() and equals()



Pragmatic programming
Data model, TDD, Refactoring, Design Patterns



Why?

More than 40 years of software :

● Still more bugs ⇒ lack of tests
● Not understandable code ⇒ lack of refactoring

Let’s make code a better place to play !

Définition de la folie :
C'est de refaire toujours la même chose, et 

d'attendre des résultats différents. 
- Albert Einstein -



Version control



Test Driven Development

1. Write a failing test
2. Write the simplest code to pass the test
3. Refactor your code: remove duplication, 

rename variables, extract methods...



Design patterns

● Creational (e.g. Factory)
● Structural (e.g. Adapter)
● Behavioral (e.g. Chain of Responsibility)

Many other examples on : https://refactoring.guru/design-patterns 

https://refactoring.guru/design-patterns


Design pattern “Factory method”



Design pattern “Adapter”

Problem Solution



Design pattern “Chain of responsibility”


