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Processes and threads



Process vs. Thread

Process :

● Has its own execution environment
● Has its own memory space
● Can communicate with another process 

through pipes (e.g. C language) or sockets 

Java Virtual Machine = one single process

Thread :

● Threads exist within a process 
➝ every process has at least one (main)

● Can share resources with each other
(memory, open files, env. variables)

     Efficient communication

     Issues : concurrent access, deadlock...



The class Thread

Each thread is associated with an instance of the class Thread.

There are two ways for using threads :

● Directly instantiate them to control creation and management :
(new Thread(runnable)).start()

● Use an ExecutorService that will create/manage threads for you :
Executors.newSingleThreadExecutor().submit(runnable), 
Executors.newFixedThreadPool(4).submit(runnable)...



The interface Runnable



Interrupts

How many instances of Thread ?

What could we read on the standard output ?



Synchronization



Concurrent accesses

How many instances of Thread ?
What could we read on the standard output ?



synchronized methods

What could we read on the standard output ?



Deadlock

What could happen here ?



Tips to deal with concurrency



Do you really need to deal with concurrency?

vs.

Thread-safe object

Thread-unsafe object



Immutable objects

● Don't provide "setter" methods 
● Make all fields final and private
● Don't share references to the mutable objects between different threads



Concurrent Collections

● BlockingQueue defines a FIFO data structure that blocks when you 
attempt to add to a full queue, or retrieve from an empty queue

● ConcurrentHashMap (implements Map) makes atomic put() and 
get() operations to avoid synchronization

● ...

→  See package java.util.concurrent



Atomic variables
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Talk to the outside world
with java.net



To read data from a Socket,
use a BufferedReader

1. Make a socket connection to the server

2. Make an InputStreamReader chained to the Socket's low-level (connection) input stream

3. Make a BufferedReader and read ! Low-level 
byte stream



To write data to a Socket,
use a PrintWriter

1. Make a socket connection to the server

2. Make a PrintWriter chained to the Socket's low-level (connection) output stream

3. Write something Low-level 
byte stream



TCP connections



Writing a simple TCP server

Local listening port



Writing a simple TCP client

Server port



Serialization



Serializable objects



Server with object serialization



Client with object serialization



Datagram sockets (UDP)



Send a DatagramPacket



Receive a DatagramPacket



Thank you!

Questions ?



Next course :

You decide what you wanna know !



Resources



Java Tutorials

● Concurrency :
https://docs.oracle.com/javase/tutorial/essential/concurrency

● Network : 
https://docs.oracle.com/javase/tutorial/networking/index.html 

https://docs.oracle.com/javase/tutorial/essential/concurrency
https://docs.oracle.com/javase/tutorial/networking/index.html

