
Object-Oriented
Programming

Frédéric Boisguérin
fboisgue@insa-toulouse.fr

Disclaimer

High density course

Outline

1. Introduction
2. Pragmatic programming
3. User interaction
4. Concurrent programming
5. Network programming

Processes and threads

Process vs. Thread

Process :

● Has its own execution environment
● Has its own memory space
● Can communicate with another process

through pipes (e.g. C language) or sockets

Java Virtual Machine = one single process

Thread :

● Threads exist within a process
➝ every process has at least one (main)

● Can share resources with each other
(memory, open files, env. variables)

 Efficient communication

 Issues : concurrent access, deadlock...

The class Thread

Each thread is associated with an instance of the class Thread.

There are two ways for using threads :

● Directly instantiate them to control creation and management :
(new Thread(runnable)).start()

● Use an ExecutorService that will create/manage threads for you :
Executors.newSingleThreadExecutor().submit(runnable),
Executors.newFixedThreadPool(4).submit(runnable)...

The interface Runnable

Interrupts

How many instances of Thread ?

What could we read on the standard output ?

Synchronization

Concurrent accesses

How many instances of Thread ?
What could we read on the standard output ?

synchronized methods

What could we read on the standard output ?

Deadlock

What could happen here ?

Tips to deal with concurrency

Do you really need to deal with concurrency?

vs.

Thread-safe object

Thread-unsafe object

Immutable objects

● Don't provide "setter" methods
● Make all fields final and private
● Don't share references to the mutable objects between different threads

Concurrent Collections

● BlockingQueue defines a FIFO data structure that blocks when you
attempt to add to a full queue, or retrieve from an empty queue

● ConcurrentHashMap (implements Map) makes atomic put() and
get() operations to avoid synchronization

● ...

→ See package java.util.concurrent

Atomic variables

Outline

1. Introduction
2. Pragmatic programming
3. User interaction
4. Concurrent programming
5. Network programming

Talk to the outside world
with java.net

To read data from a Socket,
use a BufferedReader

1. Make a socket connection to the server

2. Make an InputStreamReader chained to the Socket's low-level (connection) input stream

3. Make a BufferedReader and read ! Low-level
byte stream

To write data to a Socket,
use a PrintWriter

1. Make a socket connection to the server

2. Make a PrintWriter chained to the Socket's low-level (connection) output stream

3. Write something Low-level
byte stream

TCP connections

Writing a simple TCP server

Local listening port

Writing a simple TCP client

Server port

Serialization

Serializable objects

Server with object serialization

Client with object serialization

Datagram sockets (UDP)

Send a DatagramPacket

Receive a DatagramPacket

Thank you!

Questions ?

Next course :

You decide what you wanna know !

Resources

Java Tutorials

● Concurrency :
https://docs.oracle.com/javase/tutorial/essential/concurrency

● Network :
https://docs.oracle.com/javase/tutorial/networking/index.html

https://docs.oracle.com/javase/tutorial/essential/concurrency
https://docs.oracle.com/javase/tutorial/networking/index.html

