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Introduction
> Stability is an essential concept in automatic control theory

— for instance, first requirement in closed-loop control

> |t exists several notions of stability

< stability of an equilibrium point / input-output stability

» Main method : Lyapunov theory

< A.M. Lyapunov (1857-1918) is Russian mathematician

defended his PhD thesis in 1885
at the University of St Petersbourg
under supervision of P. Tchebychev

4/ 60



Chapitre 3 : Stability Analysis

e i INSA

TOULOUSE

Introduction

We still consider autonomous systems, without input

x = f(x) with initial conditions : x(0) = xo

where it is assumed that
> f is locally Lipschitz in a domain D C R”

> x* is an equilibrium point, that is f(x*) =0

1
Without loss of generality, we will consider in the sequel that

x*=0
In deed, if x* # 0, by change of variable y = x — x*

y=x="fy+x") gly) where g(0)=0
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Definitions

Behavior of trajectories of x around the equilibrium point ?

The equilibrium point 0 is said stable if

Ve >0, 38 =45(e) >0 suchthat [[x(0)]| <& = [[x(t)]| <e Vt>0.

Solutions remain bounded if the initial condition is small enough
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Definitions
What about convergence to the equilibrium point 7

Attractivity

The equilibrium point 0 is said to be attractor if

35 >0, [x(0)]<ds = tl_l)rrgox(t) =0
or 35>0, |x(0)]]<d = Ve>0, 3It; >0 suchthat Vt>t;, |[x(t)||<e

Solutions converge to 0 for t — oo if the initial condition is small enough
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Definitions

Asymptotic stability

The equilibrium point 0 is said to be asymptotically stable if it is stable and attractor

Unstability

The equilibrium point 0 is said unstable if it is not stable

> Stability is a notion that is local
> Attractivity is a notion that can be local or global

> |If from any initial conditions xg € R" the equi. pt is attractor, then it is said
globally asymptotically stable (GAS). It is LAS otherwise.

» The set of initial conditions such that the equilibrium point is AS is called the
region of attraction
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Stability and attractivity

Stability and attractivity are two different notions

> stability looks at whether the trajectories remain in some neighbourhood of the

equilibrium

> attractivity looks at whether the trajectories converge to the equilibrium

Butterfly system : unique equilibrium point 0 is globally attractor but unstable

Sl
v 1
S 2 2 e oaw
X1 =Xy =X e
& 0esa
X2 = 2x1X2
S R
4

INSA

TOULOUSE
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Stability and attractivity

Consider system

X1 = X2

X = —sinx

> Equilibrium points : x* = [kx , 0]T, k€ Z

> Equilibrium point is stable but not attractor

= gl B &
I R AR

% Aome

ot

0 O B
‘
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Another definition

Exponential stability

The equilibrium point 0 is said to be exponentially stable if it exists two strictly
positive scalars a and k such that

35>0, [xO<8 = VE>0, [Ix(t)] < KIIx(0)l|le~>*

Consider system :

x = —(1 + sinz(t)>x
Solution : x(t) = x(0)e™ J§ 1+sin®(r)dT

= Exponential stability :

t
[Ix(1)]] < [Ix(0)]|e™" since /0 1 +sin®(r)dr >t
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First remarks

> The objective is to study the convergence of the system trajectories towards the
origin (equilibrium point of interest) without explicit description of these
trajectories.

< no need to solve any differential equation
> For linear systems, stability can be assessed with eigenvalues of the dynamic

matrix A. Could we use linear approximation to analyze the stability (at least
local) of a nonlinear system?

< the first method of Lyapunov can answer this question

> For nonlinear systems, a more general result is actually required

< the second method of Lyapunov is a powerful tool
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Introductory example : pendulum

State variables : x; = 0 and x2 =0

x1| _ X2 L
X2 —&sinxg — %XQ ! o)

[ m

Let us calculate the energy of the system E(x) = potential energy + kinetic energy

1 .
E(x) = mgl(1 — cos ) + 5m1202

1
= mgl(1l — cosx1) + Emlzxz2

How it evolves in time?

dE(x)  dE(x)dx _ . 2 X2 _ 2 2
% - e g [mglsmxl ml x2] 7%sinx17§x2 = —kl*x5

o What can we conclude?
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Introductory example : pendulum

1
E(x) = mgl(1 — cosx1) + Em/2X22 (>0)

dE(x)
dt

= —kP3 (<0)

P> The energy derivative is negative or zero = trajectories won't diverge

> if k=0, % = 0 along system trajectories = conservation of mechanical energy

— equilibrium point 0 is stable

> if k>0, % < 0 along system trajectories = energy is decreasing until E =0

— equilibrium point 0 is asymptotically stable

© Extension to more general functions (than energy functions) : Lyapunov functions
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Fundamental theorem of stability (local)

Consider an equilibrium point x* = 0 and a domain D C R” including 0.
Let V : D — R, be a C? function such that :

V(x*)=0 and V(x) >0 VxeD)\{0}
V(x) <0 VxeD
then x* is a stable equilibrium point. Moreover, if
V(x) <0 VxeD)\{o0}

then x* is asymptotically stable.

> We consider here local stability (domain D)
> A function V satisfying the above conditions is a Lyapunov function

> This result provides only a sufficient condition for stability !

16 / 60
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lllustration of the shape of a Lyapunov function

cas n=1

casn=2 vy

= 03—
V=c

> State domain definition : x € D

> Lyapunov function : V(x) > 0, but = 0 only at x*, and V(x) < 0 (or < 0)

> V(x) = ¢; are level curves

17 / 60
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Having in mind the definition of the stability

P> Given a € > 0 and define r € (0, ¢) such that B, C D with B, = {x € R", ||x|| < r}

V(x)
cas n=1 / cas n=2
— D T

N
N

V(x)

cas n=1 cas n=2

> By definition Qg C B, and all trajectories initiated in Qg remain in Qg since
V() <0 = V(x(t) S V(x(0)<B vE20
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Sketch of the proof (2)

P It exists § > 0 such that ||x|]| < § = V(x) < B (set Bs)

V(x) T2

cas n=1 cas n=2

» Then Bs C QB C B, and

x(0)eBs = x(0)eQs = x(t)eQz = x(t)€ B,

» Hence, we can conclude that the equilibrium point is stable since

[xOll <6 = [x(<r<e Vt>0

19 / 60



Chapitre 3 : Stability Analysis

LLyapunov method INSA‘

TOULOUSE

Some vocabulary

> A function s.t. V(0) =0 and V(x) >0 Vx # 0 is a positive definite function

> A function s.t. V(0) =0 and V(x) > 0 Vx # 0 is a positive semi-definite funct.
> A function s.t. V(0) =0 and V(x) <0 Vx # 0 is a negative definite funct.

> A function s.t. V(0) =0 and V(x) <0 Vx # 0 is a negative semi-definite funct.
> Note that V/(x) negative semi-definite = —V/(x) positive semi-definite

> The surface V(x) = c is called a level line (or surface) of the function

Examples :

> V(x) = (x1 + x2)? is positive semi-definite in R?
> V(x) = xZ + x2 is positive definite in R2

> V(x) = x2 + x2 — 4 is negative definite in any disc (in R?) of radius < 2
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|
An hermitian matrix P is positive definite (semi-definite) iff

xTPx>0 (>0), Vx#0

Note also that P > 0 iff all its leading principal minors are strictly positive

Some properties :

> P >0 < all its eigenvalues are real and positive, \(P) € R

> P >0 < some ev. are 0, others are real and positive, 0 € A\(P), A(P) € R
> P >0 < —P is negative definite, —P < 0

> P >0 < P~1is positive definite, P~1 >0

> P >0 = P is a singular matrix, det(P) =0

> M€ C*" and det(M) #0 = P = MTM > 0 is positive definite

> M€ C" and det(M) =0 = P = MTM > 0 is positive semi-definite
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Example 1

Consider the system (simple linear scalar system)
X = ax, a<o

> Let's propose the Lyapunov function candidate : V(x) = %xz

(obviously V(x) >0 Vx € R\ {0} and V(0) =0)

> |ts time-derivative along the trajectories of the system is

V(x) = xx = ax?

> Sincea< 0= V(x) <0 VxeR\{0}

— the above system is asymptotically stable
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Example 2

Back to the inverted pendulum
[%1}:[ o } with a and b > 0
X2 —asinxy; — bxo

Consider the Lyapunov function candidate : V(x) = a(1 — cos(x1)) + 3x2

» Determine D
» |Is V a Lyapunov function for our system?

» What about this second function :

1
VvV = 1— — TP , ith P = P11 P12
(x) = a(1 — cos(x1)) + 5% Px wi |:P12 22

P is a positive definite matrix : p11 > 0, p22 > 0 and pyip22 — p2, >0
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» Determine D

e V(0) =0 for x3 =0+ 2km and x =0

e V(x) is positive definite over the domain —27 < x3 < 27 and for any x2

> Is V a Lyapunov function ?

e Time derivative :

V(x) = asin(xq)x1 + xa%2

2
— bx5

e Then V(x) <0, V(0) for x = 0 and Vxq

e Hence, V is a Lyapunov function and the origin of the system is stable

24 / 60



Chapitre 3 : Stability Analysis

LLyapunov method INSA‘

TOULOUSE

1
> What about this second function : V(x) = a(1 — cos(x1)) + EXTPX

e Since P is positive definite matrix, xTPx >0 Vx #0
e Forx e D,V(0)=0=x31 =x2=0

e Time derivative :

. 1
V(x) = asin(xa)x1 + E(XTPX + xTP>'<)
= asin(xa)x + (xap11 + x2p12) X1 + (xapi2 + x2p22) X2
= asin(x1)x2 + (x1p11 + x2p12) x2 + (xap12 + x2p22) ( — asin(x1) — bxz)
= asin(x1)x2(1 — paz) 4+ xaxa(p11 — bp12) + X2 (P12 — bp2a) — asin(xa)xap12

For a specific choice of P :

1—p2=0 b2 b
P11 — bp12 =0 = p=|72 2
p12 — bp22 <0 — pra =2 21
we have b b
. a
V(x) = 7Ex§ -5 sin(xg)xg <0

e The origin is asymptotically stable
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Global asymptotic stability

Previous theorems considered local stability (for a region D)

< What are the conditions to have a global property (D = R")?

Let us consider the equilibrium point x* = 0. Let V : R” — R be a C! function such
that

[x(t)|| =+ = V(x) = +oo

V(0)=0 and V(x)>0 Vx#0

V(x) <0 Vx#0

then the origin is globally asymptotically stable (GAS).

This fist condition means that function V is radially unbounded
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Exercise 1

Consider system :

X1 _ Xz—xl(xlz—i—xf)
X2 —X1 — X2 (x12 + x22)

> Considering equilibrium point (0, 0), show that
V(x) = x2 4+ x2

is a Lyapunov function

> |s the stability property asymptotic or not ? local or global 7
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Solution :
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Question

Back again on the pendulum example :

[’.“}:{ @ } with a and b > 0
X2 —asinxy; — bxs

with the Lyapunov function : V(x) = a(1 — cos(x1)) + %xg
It was shown that the origin is stable : V(x) = —bx2 <0

o Can we show that the equilibrium point is actually asymptotically stable with the
same Lyapunov function ?
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LaSalle invariance principle

Definition (invariant set)

A set M is said to be invariant if

x(0)eM = x(t)eM Vit

Assume there exists a Lyapunov function V : R” — R such that
V(x) < W(x) <0 VxeR”

then

> x* = 0 is a stable equilibrium point

> the solutions of the system converge toward the largest invariant set M included
in V' = {x st. W(x)=0}
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LaSalle invariance principle

The idea is to prove that W(x) = 0 is verified only for x = 0

Corollary

Assume there exists a Lyapunov function V' : R"” — R such that
V(X)) S W(x) <0 VxeR”

and assume that only the trivial point x = 0 remains invariant, then the equilibrium
point globally asymptotically stable
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Example

Regarding the pendulum example :

[X.l}:{ . } with a and b > 0
X —asinx; — bxy

with the Lyapunov function : V(x) = a(1 — cos(x1)) + %Xzz

It was shown that the origin is stable : V(x) = —bx2 <0

— V(x) =0 for x; = 0 and Vx;

> It corresponds to the set N = {x | x2 =0 and — 27 < x3 < 2w}
> Assume there is a trajectory in N such that x; #0 = % # 0
> And the trajectory does not belong to N

» Then x; = 0 and M = {0} = the origin is asymptotically stable

33/ 60



Chapitre 3 : Stability Analysis

L Lasalle invariance principle INSA‘

TOULOUSE

Exercise 1

Consider system :

{).“}:[ 2 } with a and b >0
X2 —axj — bxz

» Determine the equilibrium point

3t X2
> Show that V(x) = afl + ?2 is a Lyapunov function

> Apply the LaSalle invariance principle to show the asymptotic stability of the
system at the equilibrium point
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Solution :
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Exercise 2

Mass spring (nonlinear)-damper model :

my = mg — cyly| — ky

> Give a state space representation such that the origin is an equilibrium point
> Give condition on a and b so that V(x) = ax? + bx2 is a Lyapunov function

> Apply the LaSalle invariance principle to show the asymptotic stability of the
system at the equilibrium point
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Solution :
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Stability of linear systems

Let's recall some elements on linear systems

x = Ax AeR"™"

> if det(A) # 0 = unique equilibrium point x* =0
> if det(A) = 0 = infinitely many equilibrium point

> and at least one eigenvalue is zero

Consider the above linear system, The equilibrium point x* =0 is :
> stable iff Rc[\;] < 0 and for all pure imaginary eigenvalues of algebraic
multiplicity g; > 2, rank(A — \;jI,) = n— gq;

> asymptotically stable iff Re[)\;] < 0

> unstable iff there is at least one ); is such that Re[)\;] > 0
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The classical transfer function for a DC motor is of the form

Gy I _ K

= — K>0,7>0
i(s) s(rs+1) ’

A state space representation is
. [O 1 } {0]
x=13 1| X+ | k|u
T T

The equilibrium point, for u = 0, is parametrized by x* = {Xl}

(Physical interpretation ?)

— eigenvalues : 0 and f% =- origin is stable

40 / 60



Chapitre 3 : Stability Analysis

L Linear systems and linearization INSA‘

TOULOUSE

Lyapunov function candidate for LTI systems

Consider the quadratic Lyapunov function : V(x) = x7 Px, with P >0
Time derivative : .

V(x) = xTPx + x" Px
xT(ATP + PA)x

= —x"Qx

Equation to be solved : Lyapunov equation ATP + PA = —Q

> if Q@ > 0, the equilibrium point is asymptotically stable
> if Ais Hurwitz, then P verifying the Lyapunov equation is unique

> the quadratic Lyapunov function is a necessary and sufficient candidate function

41 / 60
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Stability condition for LTI systems with Lyapunov mehod

A necessary and sufficient condition for a LTI system x = Ax to be asymptotically
stable is that for any positive definite matrix @, the unique matrix P solution of the
Lyapunov equation is positive matrix.

Example :

Let's take Q = I. The Lyapunov equation is :
pi1 pi2| | O 4 n 0 —8||pu pr2| _|-1 O
P12 p22| -8 —12 4 12| |p12  p22 0 -1

Unique solution : p1; = 15—6 and p12 = p22 = &

16
— P is thus positive definite = origin is asymptotically stable

(note that eigenvalues of A are : —4 and —8)
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Plot of the Lyapunov function

V(z)
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Exercise

Consider the linear system

> Analyze the stability with the Lyapunov method

Solution :
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Stability condition for LTI systems with Lyapunov mehod

Proof of necessity

Assume A is Hurwitz. We want to show that it implies Lyapunov equation holds.
Let Q be a positive definite matrix, and let

P= /OO exp(AT t)Q exp(At) dt
0

> The integral exists since A is Hurwitz

> P is positive definite since Q is

Let express the Lyapunov equation (left-hand side) :

o0
ATP+ PA= / AT exp(ATt)Q exp(At) + exp(AT t)Q exp(At)A dt
0

_/ exp(ATt)Qexp(At))
= [exp(ATt)Qexp(At)]:o = —Q
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Indirect Lyapunov method

Idea : use the linear approximation of a nonlinear system to conclude on its stability

< then use Taylor expansion at the order 1 (linearization) to prove local stability

Consider the system x = f(x) and its equilibrium x*. Calculate :

A Of (x)
Ox

x=x*

> if Re[A;] < 0, then the equilibrium point is locally asymptotically stable

> if there exists an eigenvalue with Re[\;] > 0, then the equilibrium point is
unstable

> if there exists an eigenvalue with Re[\;] = 0, then we cannot conclude
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Linear systems and linearization

Back to the pendulum example

Nonlinear model :
X1 _ X2
)'Q B —%sin X1 — %Xz
Jacobian matrix oF
0 1
s=a=| oo N
X COS X1 ™
Linear models
around x* = 0 around x* = |7
|0 |0
0 1 } . B [0 1 } .
X X=|g PR
T T m

Settingm=/=k=1and g =10
— left system, eigenvalues : —0.5 4+ 3.12 i = equilibrium locally asympt. stable

— right system, eigenvalues : —3.7 and 2.7 = equilibrium locally unstable
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Input to state stability

Consider nonlinear systems of the form

x = f(t,x,u)

> f is a piecewise cont. function w.r.t. time and locally Lipschitz w.r.t. x and u
» the input u is a piecewise continuous function and bounded

> it is assumed that the unforced system
x = f(t,x,0)

has an equilibrium point at 0 and is globally asymptotically stable

— How does the system behave when it is subject to a bounded input u?
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Linear systems case

Let's first start with linear systems

x = Ax + Bu, A is assumed to be Hurwitz

for which the solution is known

t
x(t) = e*txg + / et=ABy(7) dr
0

Since A is Hurwitz, 3k, X such that ||et|| < ke=?f, we have
t
Ix(2)]] < ke™*||xol| +/keﬂ(t*7)HBH||U(T)|| dr
0

kIBll

< ke *||xo| + sup |
A 0<r<t

[u(7)]]
» a bounded input = a state bounded

» the bound on the state is proportional to the bound on the input
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What about nonlinear systems ?

Consider this introductory example :

>'<:—x+(x2+1)u

» Without input, the equilibium point 0 is GAS
> With u(t) =1 (bounded input), the system is unstable

> Differently from linear systems, GAS property # 1SS
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Definitions of comparison functions

Class K functions

A continuous function « of [0, a] valued in [0, +o0] is said to be of class K if it is
strictly increasing and «(0) = 0. It is of class Koo if a = 400 and ) IiT a(f) = +oo.
—+o00

Class £ functions

A continuous function « of [0, +o0] valued in [0, +oc] is said to be of class L if it is
strictly decreasing and lim () = 0.
6—+c0

Class KCL functions

A two argument function is said to be of class KL if it is of class IC w.r.t. the first
argument and of class £ w.r.t. the second one.
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Examples of comparison functions

> a(x) = tan—!(x) is strictly increasing since ‘g—‘; = Hﬁ > 0. It belongs to K, but
. . ™

not Koo since lim a(x) = —.

X—00 2

> a(x) = x¥, k > 1 is strictly increasing since g—i = kxk=1 > 0. Furthermore,
lim a(x) = 400, thus a belongs to Koo.
X—> 00

X

> B(x,y) = oy +1° k>0
1
> It is strictly increasing in x since = oy 117 >0
—kx?

ap
P It is strictly decreasing in y since — = ——— <0
Y ginysince 5 = oy + 12
> i =0
L im_B(x,y)

P It is function of class KL

> What about the function 3(x,y) = xke=%,a>0, k> 1
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Lyapunov theorem with comparison functions

We still consider a nonlinear system of the form

x = f(x)

with an equilibrium point at 0

|
Considering the equilibrium point x* = 0 and a domain D including 0. Let
V(x) : D — R be a C?! function such that :

ar(lIx]) < V(x) < az(lIx]))
V(x) < —as([IxIl)

then the above system is
> stable if a1, ap are class K and a3 > 0 on D,

> asymptotically stable if a1, a2 and a3 are class Koo functions.
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Definition of the Input to State Stability

A system of the form
x = f(x, u)

is said to be input to state stable (ISS) if and only if it exists a function g of class KL
and a function v of class K such that for all initial conditions xp and all the bounded
inputs u(t), the solution x(t) exists for t > 0 and satisfies :

(@)l < Bllboll, &) +7(_svp_ flu(r)l)

if u = 0, then the definition corresponds to the global asymptotic stability of the origin

— the origin of x = f(x,0) is GAS

ISS means that any bounded input implies a bounded state
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Exercise

Consider the system

Xx = u — sat(x)

where sat(-) is the saturation function

1 if x>1
sat(x) =< X if -1<x<1
-1 if x<-1

> Show that the system without input (u = 0) is GAS.

> Find a particular input u showing that the system is not ISS.
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Solution :
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Theorem for ISS analysis

The theorem for ISS property is also based on a Lyapunov function.

Consider system : x = f(t, x, u)

Let us consider a function V : Ry x R” — R, a C! function such that :

a1 (|lx[l) < V(t,x) < aa(|Ix])
ov oV
3t T o (B u) = —as(fixl), Vx|l = o(]|ufl) >0
X

where a1, as are class K functions, p is a class KC function and a3z is a positive
definite function, then the system is ISS.
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Consider the system :

x=-x3+u

> The origin of the unforced system is GAS. Shown with the LK : V(x) = %xz.

> Using the same LF, its time-derivative along the trajectories of the whole system

V(x) = —x* 4 xu

> Without any change, let's introduce a scalar 6 € (0,1) :
V(x) = —x* 4+ xu + 0x* — 0x* = —(1 — 0)x* + x(u — 0x3)
We obtain that V(x) < —(1 — 0)x* provided that
3
x(u—60x3) <0 or equivalently [x] > (%)

. . lul \3
> the system is ISS with p(||u||) = <7>
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Consider the system :
x=—x—2x34+ (1 +x*)?

> The origin of the unforced system is GAS. Shown with the LK : V(x) = %xz.

> Using the same LF, its time-derivative along the trajectories of the whole system
V(x) = —x% —2x* + x(1 4+ x?)u?
= —x* = x* = x4 x(1 + x®)u?
= —x* = x2(1 4 x?) + x(1 + x*)u?
= —x*+ (1 +X2)(—X2 +XU2)
We obtain that V(x) < —x* provided that

—x% +xu? <0 or equivalently x| > u?

> the system is ISS with p(||u||) = |u|?
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