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Introduction and de�nitions

Introduction

I Stability is an essential concept in automatic control theory

↪→ for instance, �rst requirement in closed-loop control

I It exists several notions of stability

↪→ stability of an equilibrium point / input-output stability

I Main method : Lyapunov theory

↪→ A.M. Lyapunov (1857-1918) is Russian mathematician

defended his PhD thesis in 1885

at the University of St Petersbourg

under supervision of P. Tchebychev
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Introduction

We still consider autonomous systems, without input

ẋ = f (x) with initial conditions : x(0) = x0

where it is assumed that

I f is locally Lipschitz in a domain D ⊂ Rn

I x∗ is an equilibrium point, that is f (x∗) = 0

Without loss of generality, we will consider in the sequel that

x∗ = 0

In deed, if x∗ 6= 0, by change of variable y = x − x∗

ẏ = ẋ = f (y + x∗)
def
= g(y) where g(0) = 0

5 / 60

Chapitre 3 : Stability Analysis

Introduction and de�nitions

De�nitions

Behavior of trajectories of x around the equilibrium point ?

Stability

The equilibrium point 0 is said stable if

∀ε > 0, ∃δ = δ(ε) > 0 such that ‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

Solutions remain bounded if the initial condition is small enough
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De�nitions
What about convergence to the equilibrium point ?

Attractivity

The equilibrium point 0 is said to be attractor if

∃δ > 0, ‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

or ∃δ > 0, ‖x(0)‖ < δ ⇒ ∀ε > 0, ∃t1 > 0 such that ∀t > t1, ‖x(t)‖ < ε

Solutions converge to 0 for t →∞ if the initial condition is small enough
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De�nitions

Asymptotic stability

The equilibrium point 0 is said to be asymptotically stable if it is stable and attractor

Unstability

The equilibrium point 0 is said unstable if it is not stable

I Stability is a notion that is local

I Attractivity is a notion that can be local or global

I If from any initial conditions x0 ∈ Rn the equi. pt is attractor, then it is said
globally asymptotically stable (GAS). It is LAS otherwise.

I The set of initial conditions such that the equilibrium point is AS is called the
region of attraction
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Stability and attractivity

Stability and attractivity are two di�erent notions

I stability looks at whether the trajectories remain in some neighbourhood of the
equilibrium

I attractivity looks at whether the trajectories converge to the equilibrium

Butter�y system : unique equilibrium point 0 is globally attractor but unstable

{
ẋ1 = x2

1
− x2

2

ẋ2 = 2x1x2
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Stability and attractivity

Consider system {
ẋ1 = x2

ẋ2 = − sin x1

I Equilibrium points : x? = [kπ , 0]T , k ∈ Z

I Equilibrium point is stable but not attractor
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Another de�nition

Exponential stability

The equilibrium point 0 is said to be exponentially stable if it exists two strictly
positive scalars α and k such that

∃δ > 0, ‖x(0)‖ < δ ⇒ ∀t ≥ 0, ‖x(t)‖ < k‖x(0)‖e−αt

Consider system :

ẋ = −
(
1 + sin2(t)

)
x

Solution : x(t) = x(0)e−
∫ t
0 1+sin2(τ)dτ

⇒ Exponential stability :

‖x(t)‖ < ‖x(0)‖e−t since

∫ t

0

1 + sin2(τ)dτ > t
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Lyapunov method

First remarks

I The objective is to study the convergence of the system trajectories towards the
origin (equilibrium point of interest) without explicit description of these
trajectories.

↪→ no need to solve any di�erential equation

I For linear systems, stability can be assessed with eigenvalues of the dynamic
matrix A. Could we use linear approximation to analyze the stability (at least
local) of a nonlinear system ?

↪→ the �rst method of Lyapunov can answer this question

I For nonlinear systems, a more general result is actually required

↪→ the second method of Lyapunov is a powerful tool
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Lyapunov method

Introductory example : pendulum

State variables : x1 = θ and x2 = θ̇[
ẋ1
ẋ2

]
=

[
x2

− g
l

sin x1 − k
m
x2

]

Let us calculate the energy of the system E(x) = potential energy + kinetic energy

E(x) = mgl(1− cos θ) +
1

2
ml2θ̇2

= mgl(1− cos x1) +
1

2
ml2x22

How it evolves in time ?

dE(x)

dt
=

dE(x)

dx

dx

dt
=
[
mgl sin x1 ml2x2

] [ x2
− g

l
sin x1 − k

m
x2

]
= −kl2x22

� What can we conclude ?
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Lyapunov method

Introductory example : pendulum

E(x) = mgl(1− cos x1) +
1

2
ml2x22 (> 0)

dE(x)

dt
= − kl2x22 (≤ 0)

I The energy derivative is negative or zero ⇒ trajectories won't diverge

I if k = 0, dE
dt

= 0 along system trajectories ⇒ conservation of mechanical energy

↪→ equilibrium point 0 is stable

I if k > 0, dE
dt
≤ 0 along system trajectories ⇒ energy is decreasing until E = 0

↪→ equilibrium point 0 is asymptotically stable

� Extension to more general functions (than energy functions) : Lyapunov functions
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Lyapunov method

Fundamental theorem of stability (local)

Theorem
Consider an equilibrium point x∗ = 0 and a domain D ⊂ Rn including 0.
Let V : D → R, be a C1 function such that :

V (x∗) = 0 and V (x) > 0 ∀x ∈ D \ {0}

V̇ (x) ≤ 0 ∀x ∈ D

then x∗ is a stable equilibrium point. Moreover, if

V̇ (x) < 0 ∀x ∈ D \ {0}

then x∗ is asymptotically stable.

I We consider here local stability (domain D)

I A function V satisfying the above conditions is a Lyapunov function

I This result provides only a su�cient condition for stability !
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Lyapunov method

Illustration of the shape of a Lyapunov function

cas n=1

cas n=2

I State domain de�nition : x ∈ D

I Lyapunov function : V (x) ≥ 0, but = 0 only at x∗, and V̇ (x) ≤ 0 (or < 0)

I V (x) = ci are level curves
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Lyapunov method

Sketch of the proof (1)

Having in mind the de�nition of the stability

I Given a ε > 0 and de�ne r ∈ (0, ε) such that Br ⊂ D with Br = {x ∈ Rn, ‖x‖ ≤ r}

cas n=1 cas n=2

I Let be α = min‖x‖=r V (x) (> 0) and de�ne β ∈ (0, α) with Ωβ = {x ∈ Br , V (x) ≤ β}

cas n=1 cas n=2

I By de�nition Ωβ ⊂ Br and all trajectories initiated in Ωβ remain in Ωβ since

V̇ (x) ≤ 0 ⇒ V (x(t)) ≤ V (x(0)) ≤ β ∀t ≥ 0

18 / 60

Chapitre 3 : Stability Analysis

Lyapunov method

Sketch of the proof (2)

I It exists δ > 0 such that ‖x‖ ≤ δ ⇒ V (x) ≤ β (set Bδ)

cas n=1 cas n=2

I Then Bδ ⊂ Ωβ ⊂ Br and

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br

I Hence, we can conclude that the equilibrium point is stable since

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ r < ε ∀t ≥ 0

19 / 60

Chapitre 3 : Stability Analysis

Lyapunov method

Some vocabulary

I A function s.t. V (0) = 0 and V (x) > 0 ∀x 6= 0 is a positive de�nite function

I A function s.t. V (0) = 0 and V (x) ≥ 0 ∀x 6= 0 is a positive semi-de�nite funct.

I A function s.t. V (0) = 0 and V (x) < 0 ∀x 6= 0 is a negative de�nite funct.

I A function s.t. V (0) = 0 and V (x) ≤ 0 ∀x 6= 0 is a negative semi-de�nite funct.

I Note that V (x) negative semi-de�nite ≡ −V (x) positive semi-de�nite

I The surface V (x) = c is called a level line (or surface) of the function

Examples :

I V (x) = (x1 + x2)2 is positive semi-de�nite in R2

I V (x) = x2
1

+ x2
2
is positive de�nite in R2

I V (x) = x2
1

+ x2
2
− 4 is negative de�nite in any disc (in R2) of radius < 2
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Lyapunov method

An hermitian matrix P is positive de�nite (semi-de�nite) i�

xTPx > 0 (≥ 0), ∀x 6= 0

Note also that P > 0 i� all its leading principal minors are strictly positive

Some properties :

I P > 0 ⇔ all its eigenvalues are real and positive, λ(P) ∈ R+
∗

I P ≥ 0 ⇔ some ev. are 0, others are real and positive, 0 ∈ λ(P), λ(P) ∈ R+

I P > 0 ⇔ −P is negative de�nite, −P < 0

I P > 0 ⇔ P−1 is positive de�nite, P−1 > 0

I P ≥ 0 ⇒ P is a singular matrix, det(P) = 0

I M ∈ Cn×n and det(M) 6= 0 ⇒ P = MTM > 0 is positive de�nite

I M ∈ Cn×n and det(M) = 0 ⇒ P = MTM ≥ 0 is positive semi-de�nite
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Lyapunov method

Example 1

Consider the system (simple linear scalar system)

ẋ = ax , a < 0

I Let's propose the Lyapunov function candidate : V (x) = 1

2
x2

(obviously V (x) > 0 ∀x ∈ R \ {0} and V (0) = 0)

I Its time-derivative along the trajectories of the system is

V̇ (x) = xẋ = ax2

I Since a < 0 ⇒ V̇ (x) < 0 ∀x ∈ R \ {0}

↪→ the above system is asymptotically stable
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Lyapunov method

Example 2

Back to the inverted pendulum[
ẋ1
ẋ2

]
=

[
x2

−a sin x1 − bx2

]
, with a and b > 0

Consider the Lyapunov function candidate : V (x) = a
(
1− cos(x1)

)
+ 1

2
x2
2

I Determine D

I Is V a Lyapunov function for our system ?

I What about this second function :

V (x) = a
(
1− cos(x1)

)
+

1

2
xTPx , with P =

[
p11 p12
p12 p22

]

P is a positive de�nite matrix : p11 > 0, p22 > 0 and p11p22 − p2
12
> 0
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Lyapunov method

I Determine D

• V (0) = 0 for x1 = 0± 2kπ and x2 = 0

• V (x) is positive de�nite over the domain −2π < x1 < 2π and for any x2

I Is V a Lyapunov function ?

• Time derivative :

V̇ (x) = a sin(x1)ẋ1 + x2ẋ2

= − bx22

• Then V̇ (x) ≤ 0, V̇ (0) for x2 = 0 and ∀x1

• Hence, V is a Lyapunov function and the origin of the system is stable
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Lyapunov method

I What about this second function : V (x) = a
(
1− cos(x1)

)
+

1

2
xTPx

• Since P is positive de�nite matrix, xTPx > 0 ∀x 6= 0

• For x ∈ D, V (0) = 0 ⇒ x1 = x2 = 0

• Time derivative :

V̇ (x) = a sin(x1)ẋ1 +
1

2

(
ẋTPx + xTPẋ

)
= a sin(x1)ẋ1 +

(
x1p11 + x2p12

)
ẋ1 +

(
x1p12 + x2p22

)
ẋ2

= a sin(x1)x2 +
(
x1p11 + x2p12

)
x2 +

(
x1p12 + x2p22

)(
− a sin(x1)− bx2

)
= a sin(x1)x2(1− p22) + x1x2(p11 − bp12) + x22 (p12 − bp22)− a sin(x1)x1p12

For a speci�c choice of P : 1− p22 = 0
p11 − bp12 = 0
p12 − bp22 < 0 → p12 = b

2

⇒ P =

 b2

2
b
2

b
2 1


we have

V̇ (x) = −
b

2
x22 −

ab

2
sin(x1)x1 < 0

• The origin is asymptotically stable
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Lyapunov method

Global asymptotic stability

Previous theorems considered local stability (for a region D)

↪→ What are the conditions to have a global property (D = Rn) ?

Theorem
Let us consider the equilibrium point x∗ = 0. Let V : Rn → R be a C1 function such
that

‖x(t)‖ → +∞ ⇒ V (x)→ +∞

V (0) = 0 and V (x) > 0 ∀x 6= 0

V̇ (x) < 0 ∀x 6= 0

then the origin is globally asymptotically stable (GAS).

This �st condition means that function V is radially unbounded

26 / 60

Chapitre 3 : Stability Analysis

Lyapunov method

Exercise 1

Consider system :

[
ẋ1
ẋ2

]
=

[
x2 − x1(x2

1
+ x2

2
)

−x1 − x2(x2
1

+ x2
2

)

]

I Considering equilibrium point (0 , 0), show that

V (x) = x21 + x22

is a Lyapunov function

I Is the stability property asymptotic or not ? local or global ?
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Lyapunov method

Solution :

I Candidate function V (x) = x21 + x22

• V is positive de�nite

• Time derivative is negative de�nite :

V̇ (x) = −2(x21 + x22 )2 < 0

• The origin is asymptotically stable

I We have global asymptotic stability (GAS)

• asymptotic since V̇ (x) < 0

• global since V (x) is radially unbounded

� Note that the globalness of this result implies that the origin is the only equilibrium
point of the system
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Question

Back again on the pendulum example :

[
ẋ1
ẋ2

]
=

[
x2

−a sin x1 − bx2

]
, with a and b > 0

with the Lyapunov function : V (x) = a
(
1− cos(x1)

)
+ 1

2
x2
2

It was shown that the origin is stable : V̇ (x) = −bx2
2
≤ 0

� Can we show that the equilibrium point is actually asymptotically stable with the
same Lyapunov function ?
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LaSalle invariance principle

De�nition (invariant set)

A set M is said to be invariant if

x(0) ∈M ⇒ x(t) ∈M ∀t

Theorem
Assume there exists a Lyapunov function V : Rn → R such that

V̇ (x) ≤W (x) ≤ 0 ∀x ∈ Rn

then

I x∗ = 0 is a stable equilibrium point

I the solutions of the system converge toward the largest invariant setM included
in N = {x s.t. W (x) = 0}
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LaSalle invariance principle

The idea is to prove that W (x) = 0 is veri�ed only for x = 0

Corollary

Assume there exists a Lyapunov function V : Rn → R such that

V̇ (x) ≤W (x) ≤ 0 ∀x ∈ Rn

and assume that only the trivial point x = 0 remains invariant, then the equilibrium
point globally asymptotically stable
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LaSalle invariance principle

Example

Regarding the pendulum example :

[
ẋ1
ẋ2

]
=

[
x2

−a sin x1 − bx2

]
, with a and b > 0

with the Lyapunov function : V (x) = a
(
1− cos(x1)

)
+ 1

2
x2
2

It was shown that the origin is stable : V̇ (x) = −bx2
2
≤ 0

↪→ V̇ (x) = 0 for x2 = 0 and ∀x1

I It corresponds to the set N = {x | x2 = 0 and − 2π < x1 < 2π}

I Assume there is a trajectory in N such that x1 6= 0 ⇒ ẋ2 6= 0

I And the trajectory does not belong to N

I Then x1 = 0 andM = {0} ⇒ the origin is asymptotically stable
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LaSalle invariance principle

Exercise 1

Consider system :

[
ẋ1
ẋ2

]
=

[
x2

−ax3
1
− bx2

]
, with a and b > 0

I Determine the equilibrium point

I Show that V (x) = a
x4
1

4
+

x2
2

2
is a Lyapunov function

I Apply the LaSalle invariance principle to show the asymptotic stability of the
system at the equilibrium point
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LaSalle invariance principle

Solution :

I Equilibrium point : x∗
1

= 0 and x∗
2

= 0

I Is V (x) = a
x4
1

4
+

x2
2

2
a Lyapunov function ?

• V is positive de�nite and radially unbounded

• Time derivative :
V̇ (x) = ax31 ẋ1 + x2ẋ2

= − bx22

V̇ (x) ≤ 0

• The origin is stable

I Let's apply the LaSalle invariance principle : V̇ (x) = 0 for x2 = 0 and ∀x1 ∈ R

• N = {x | x2 = 0 and x1 ∈ R}

• If a trajectory in N such that x1 6= 0 ⇒ ẋ2 6= 0 ⇒ trajectory not in N

• The only invariant set in N isM = {0} ⇒ the origin is asymptotically stable
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Exercise 2

Mass spring (nonlinear)-damper model :

mÿ = mg − cẏ |ẏ | − ky

I Give a state space representation such that the origin is an equilibrium point

I Give condition on a and b so that V (x) = ax21 + bx22 is a Lyapunov function

I Apply the LaSalle invariance principle to show the asymptotic stability of the
system at the equilibrium point
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Solution :

I State space model : x1 = y − mg
k

and x2 = ẏ{
ẋ1 = x2

ẋ2 = − k
m
x1 − c

m
x2|x2|

I Take V (x) = ax21 + bx22 with a and b > 0

• V is positive de�nite and radially unbounded

• Time derivative :

V̇ (x) = 2
(
a − b

k

m

)
x2x1 − 2b

c

m
|x2|x22

= − c|x2|x22 ≤ 0

choosing a = k
2 and b = m

2

• The origin is stable

I Let's apply the LaSalle invariance principle. With the same argument than in
previous cases :

• The only invariant set in N isM = {0} ⇒ the origin is asymptotically stable
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Stability of linear systems

Let's recall some elements on linear systems

ẋ = Ax A ∈ Rn×n

I if det(A) 6= 0 ⇒ unique equilibrium point x∗ = 0

I if det(A) = 0 ⇒ in�nitely many equilibrium point

I and at least one eigenvalue is zero

Theorem
Consider the above linear system, The equilibrium point x∗ = 0 is :

I stable i� Re [λi ] ≤ 0 and for all pure imaginary eigenvalues of algebraic
multiplicity qi ≥ 2, rank(A− λi In) = n − qi

I asymptotically stable i� Re [λi ] < 0

I unstable i� there is at least one λi is such that Re [λi ] > 0
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Example

The classical transfer function for a DC motor is of the form

G(s) =
ŷ(s)

û(s)
=

K

s(τs + 1)
K > 0, τ > 0

A state space representation is

ẋ =

[
0 1
0 − 1

τ

]
x +

[
0
K
τ

]
u

The equilibrium point, for u = 0, is parametrized by x∗ =

[
x∗
1

0

]
(Physical interpretation ?)

↪→ eigenvalues : 0 and − 1

τ
⇒ origin is stable
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Lyapunov function candidate for LTI systems

Consider the quadratic Lyapunov function : V (x) = xTPx , with P > 0

Time derivative :
V̇ (x) = xTPẋ + ẋTPx

= xT
(
ATP + PA

)
x

= − xTQx

Equation to be solved : Lyapunov equation ATP + PA = −Q

I if Q > 0, the equilibrium point is asymptotically stable

I if A is Hurwitz, then P verifying the Lyapunov equation is unique

I the quadratic Lyapunov function is a necessary and su�cient candidate function
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Stability condition for LTI systems with Lyapunov mehod

Theorem
A necessary and su�cient condition for a LTI system ẋ = Ax to be asymptotically
stable is that for any positive de�nite matrix Q, the unique matrix P solution of the
Lyapunov equation is positive matrix.

Example :

ẋ =

[
0 4
−8 −12

]
x

Let's take Q = I. The Lyapunov equation is :[
p11 p12
p12 p22

] [
0 4
−8 −12

]
+

[
0 −8
4 −12

] [
p11 p12
p12 p22

]
=

[
−1 0
0 −1

]

Unique solution : p11 = 5

16
and p12 = p22 = 1

16

↪→ P is thus positive de�nite ⇒ origin is asymptotically stable

(note that eigenvalues of A are : −4 and −8)
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Plot of the Lyapunov function

V (x) =

[
x1
x2

]T [ 5

16

1

16

1

16

1

16

] [
x1
x2

]

And trajectory of x from the initial condition x0 =

[
−20
−60

]
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Exercise

Consider the linear system

ẋ =

[
−3 −1
1 −1

]
x

I Analyze the stability with the Lyapunov method

Solution :

Lyapunov equation to be solved (with Q = I) : ATP + PA = −Q

[
p11 p12
p12 p22

] [
−3 −1
1 −1

]
+

[
−3 1
−1 −1

] [
p11 p12
p12 p22

]
=

[
−1 0
0 −1

]

Unique solution : p11 = 9

48
, p12 = 1

16
and p22 = 7

16

↪→ P is thus positive de�nite ⇒ origin is asymptotically stable

(note that eigenvalues of A are : −2 twice)
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Linear systems and linearization

Stability condition for LTI systems with Lyapunov mehod

Proof of necessity

Assume A is Hurwitz. We want to show that it implies Lyapunov equation holds.
Let Q be a positive de�nite matrix, and let

P =

∫ ∞
0

exp(AT t)Q exp(At) dt

I The integral exists since A is Hurwitz

I P is positive de�nite since Q is

Let express the Lyapunov equation (left-hand side) :

ATP + PA =

∫ ∞
0

AT exp(AT t)Q exp(At) + exp(AT t)Q exp(At)A dt

=

∫ ∞
0

d

dt

(
exp(AT t)Q exp(At)

)
dt

=
[

exp(AT t)Q exp(At)
]∞
0

= −Q
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Indirect Lyapunov method

Idea : use the linear approximation of a nonlinear system to conclude on its stability

↪→ then use Taylor expansion at the order 1 (linearization) to prove local stability

Theorem
Consider the system ẋ = f (x) and its equilibrium x∗. Calculate :

A =
∂f (x)

∂x

∣∣∣∣
x=x∗

I if Re [λi ] < 0, then the equilibrium point is locally asymptotically stable

I if there exists an eigenvalue with Re [λi ] > 0, then the equilibrium point is
unstable

I if there exists an eigenvalue with Re [λi ] = 0, then we cannot conclude
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Back to the pendulum example

Nonlinear model : [
ẋ1
ẋ2

]
=

[
x2

− g
l

sin x1 − k
m
x2

]

Jacobian matrix
∂f

∂x
(x) = A =

[
0 1

− g
l

cos x1 − k
m

]

Linear models

around x? =

[
0
0

]
around x? =

[
π
0

]

˙̃x =

[
0 1

− g
l
− k

m

]
x̃ ˙̃x =

[
0 1
g
l
− k

m

]
x̃

Setting m = l = k = 1 and g = 10

↪→ left system, eigenvalues : −0.5± 3.12 i ⇒ equilibrium locally asympt. stable

↪→ right system, eigenvalues : −3.7 and 2.7 ⇒ equilibrium locally unstable
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Input to state stability

Consider nonlinear systems of the form

ẋ = f (t, x , u)

I f is a piecewise cont. function w.r.t. time and locally Lipschitz w.r.t. x and u

I the input u is a piecewise continuous function and bounded

I it is assumed that the unforced system

ẋ = f (t, x , 0)

has an equilibrium point at 0 and is globally asymptotically stable

↪→ How does the system behave when it is subject to a bounded input u ?
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Linear systems case

Let's �rst start with linear systems

ẋ = Ax + Bu, A is assumed to be Hurwitz

for which the solution is known

x(t) = eAtx0 +

t∫
0

e(t−τ)ABu(τ) dτ

Since A is Hurwitz, ∃k, λ such that ‖eAt‖ ≤ ke−λt , we have

‖x(t)‖ ≤ ke−λt‖x0‖+

t∫
0

ke−λ(t−τ)‖B‖‖u(τ)‖ dτ

≤ ke−λt‖x0‖+
k‖B‖
λ

sup
0≤τ≤t

‖u(τ)‖

I a bounded input ⇒ a state bounded

I the bound on the state is proportional to the bound on the input
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What about nonlinear systems ?

Consider this introductory example :

ẋ = −x + (x2 + 1)u

I Without input, the equilibium point 0 is GAS

I With u(t) = 1 (bounded input), the system is unstable

I Di�erently from linear systems, GAS property ; ISS
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De�nitions of comparison functions

Class K functions
A continuous function α of [0 , a] valued in [0 , +∞] is said to be of class K if it is
strictly increasing and α(0) = 0. It is of class K∞ if a = +∞ and lim

θ→+∞
α(θ) = +∞.

Class L functions
A continuous function α of [0 , +∞] valued in [0 , +∞] is said to be of class L if it is
strictly decreasing and lim

θ→+∞
α(θ) = 0.

Class KL functions
A two argument function is said to be of class KL if it is of class K w.r.t. the �rst
argument and of class L w.r.t. the second one.
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Examples of comparison functions

I α(x) = tan−1(x) is strictly increasing since ∂α
∂x

= 1

1+x2
> 0. It belongs to K, but

not K∞ since lim
x→∞

α(x) =
π

2
.

I α(x) = xk , k > 1 is strictly increasing since ∂α
∂x

= kxk−1 > 0. Furthermore,
lim

x→∞
α(x) = +∞, thus α belongs to K∞.

I β(x , y) =
x

kxy + 1
, k > 0

I It is strictly increasing in x since
∂β

∂x
=

1

(kxy + 1)2
> 0

I It is strictly decreasing in y since
∂β

∂y
=

−kx2

(kxy + 1)2
< 0

I lim
y→+∞

β(x, y) = 0

I It is function of class KL

I What about the function β(x , y) = xke−ay , a > 0, k > 1
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Lyapunov theorem with comparison functions

We still consider a nonlinear system of the form

ẋ = f (x)

with an equilibrium point at 0

Considering the equilibrium point x∗ = 0 and a domain D including 0. Let
V (x) : D → R be a C1 function such that :

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

V̇ (x) ≤ −α3(‖x‖)

then the above system is

I stable if α1, α2 are class K and α3 ≥ 0 on D,
I asymptotically stable if α1, α2 and α3 are class K∞ functions.
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De�nition of the Input to State Stability

De�nition
A system of the form

ẋ = f (x , u)

is said to be input to state stable (ISS) if and only if it exists a function β of class KL
and a function γ of class K such that for all initial conditions x0 and all the bounded
inputs u(t), the solution x(t) exists for t ≥ 0 and satis�es :

‖x(t)‖ ≤ β(‖x0‖, t) + γ
(

sup
0≤τ≤t

‖u(τ)‖
)

if u = 0, then the de�nition corresponds to the global asymptotic stability of the origin

↪→ the origin of ẋ = f (x , 0) is GAS

ISS means that any bounded input implies a bounded state
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Exercise

Consider the system

ẋ = u − sat(x)

where sat(·) is the saturation function

sat(x) =


1 if x > 1

x if −1 ≤ x ≤ 1

−1 if x < −1

I Show that the system without input (u = 0) is GAS.

I Find a particular input u showing that the system is not ISS.
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Solution :

I Consider the Lyapunov function candidate : V (x) =
1

2
x2

• V is positive de�nite and radially unbounded

• Time derivative :

V̇ (x) = −x sat(x) =


−x if x > 1

−x2 if −1 ≤ x ≤ 1

x if x < −1

• The origin is GAS

I For u = 2 and x0 = 1, we have

ẋ = 1 ⇒ x = t + 1

• u is bounded while x is not ⇒ system is not ISS
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Theorem for ISS analysis

The theorem for ISS property is also based on a Lyapunov function.

Consider system : ẋ = f (t, x , u)

Theorem
Let us consider a function V : R+ × Rn → R, a C1 function such that :

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

∂V

∂t
+
∂V

∂x
f (t, x , u) ≤ −α3(‖x‖), ∀‖x‖ ≥ ρ(‖u‖) > 0

where α1, α2 are class K∞ functions, ρ is a class K function and α3 is a positive
de�nite function, then the system is ISS.
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Example 1

Consider the system :

ẋ = −x3 + u

I The origin of the unforced system is GAS. Shown with the LK : V (x) =
1

2
x2.

I Using the same LF, its time-derivative along the trajectories of the whole system

V̇ (x) = −x4 + xu

I Without any change, let's introduce a scalar θ ∈ (0, 1) :

V̇ (x) = −x4 + xu + θx4 − θx4 = −(1− θ)x4 + x(u − θx3)

We obtain that V̇ (x) ≤ −(1− θ)x4 provided that

x(u − θx3) < 0 or equivalently |x | >
( |u|
θ

)
3

I the system is ISS with ρ(‖u‖) =
(
|u|
θ

)
3
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Example 2

Consider the system :

ẋ = −x − 2x3 + (1 + x2)u2

I The origin of the unforced system is GAS. Shown with the LK : V (x) =
1

2
x2.

I Using the same LF, its time-derivative along the trajectories of the whole system

V̇ (x) = − x2 − 2x4 + x(1 + x2)u2

= − x4 − x4 − x2 + x(1 + x2)u2

= − x4 − x2(1 + x2) + x(1 + x2)u2

= − x4 + (1 + x2)(−x2 + xu2)

We obtain that V̇ (x) ≤ −x4 provided that

−x2 + xu2 < 0 or equivalently |x | > u2

I the system is ISS with ρ(‖u‖) = |u|2
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