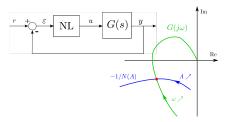
4AESE - Analyse des Systèmes Non-Linéaires

Chapitre 4 : Describing functions

Yassine ARIBA



version : 11-2022

Sommaire

Introduction

2 Harmonic linearization

Self-oscillations

Sommaire

Introduction

e Harmonic linearization

Self-oscillations

Introduction

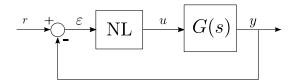
Describing functions method is an extension of harmonic method for some nonlinearities in a closed-loop system

↔ in french, it is called : méthode du premier harmonique

- It approximates a nonlinear element by a "equivalent" linear term
 - ↔ harmonic linearization
- Method particularly used to predict limit cycle in a closed-loop system

Framework

In this chapter, we only consider closed-loop system of the form

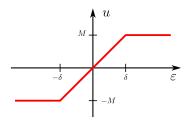


Assumptions

- The nonlinear element NL is a separable term
- It is time-invariant
- The linear term, G(s), is stable and a low-pass filter type (known as filtering hypothesis)

Nonlinear element : example 1

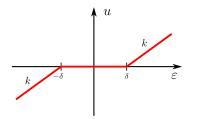
Saturation



- Linear for $\varepsilon \in [-\delta, \delta]$, constant for large values of $|\varepsilon|$.
- Often models actuator limitations
 - \hookrightarrow power amplifiers, motors, servo-value for flow control
- Usually caused by limits on component size, properties of materials, available power, mechanical configuration...

Nonlinear element : example 2

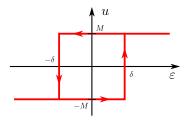
Dead zone



- *u* is zero until the magnitude of the input exceeds some threshold $|\varepsilon| > \delta$.
- Usually characterize actuators (valve, motor...) that are unresponsive to low input signals
- For instance, it models static friction on motor shaft

Nonlinear element : example 3

Hysteresis



Examples 1 and 2 are static nonlinearities, also named memoryless

 \hookrightarrow the output solely depends on the instantaneous input value

Hysteresis output depends on the instantaneous and past input values

→ nonlinear element with *memory*

Sommaire

• Introduction

a Harmonic linearization

Self-oscillations

Frequency response

Recall for linear case : The response to a sine function is also a sine function (at steady state)

 \hookrightarrow with the same frequency ω but different amplitude and phase shift w.r.t. ω

$$\begin{array}{c|c} u(s) & y(s) \\ u(t) = u_0 \sin(\omega t) & y(t) = y_0 \sin(\omega t + \varphi) \end{array}$$

For nonlinear case : The response is a periodic signal (at steady state)

 $\hookrightarrow y(t) = y(t + T)$, then a Fourier series expansion can be used

$$u(t) \longrightarrow \mathbf{NL} \qquad y(t) \longrightarrow \mathbf{y}(t) = y(t+T)$$

First harmonic approximation

In the closed-loop system, let's assume there is a limit cycle and the oscillating signal is

$$arepsilon(t)=A\sin(\omega t)$$
 ($\equiv -y(t)$ if reference is 0)

Fourier series expansion of the nonlinear component response

$$u(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

- Fourier coefficients a_0 , a_n and b_n are functions of A and ω
- if the nonlinearity is odd, $a_0 = 0$ (often the case)

First harmonic approximation

The *filtering hypothesis* implies all harmonics are filtered out and only the fundamental component is considered :

 $u(t) \simeq a_1 \cos(\omega t) + b_1 \sin(\omega t)$ $\simeq M \sin(\omega t + \phi)$ $\simeq M e^{j(\omega t + \phi)}$

with

$$a_{1}(A,\omega) = \frac{\omega}{\pi} \int_{(T)} u(t) \cos(\omega t) dt \qquad b_{1}(A,\omega) = \frac{\omega}{\pi} \int_{(T)} u(t) \sin(\omega t) dt$$
$$M(A,\omega) = \sqrt{a_{1}^{2} + b_{1}^{2}} \qquad \phi(A,\omega) = \arctan(\frac{a_{1}}{b_{1}})$$

Describing function

Similarly to linear case, frequency response = ratio sinusoidal output / sinusoidal input

The *describing function* of a nonlinear element is the complex ratio of the fundamental component of the nonlinearity by the input sinusoid

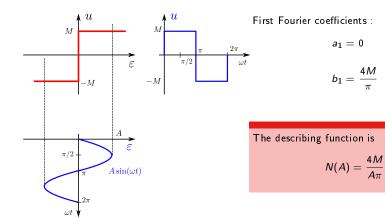
$$\mathsf{N}(A,\omega) = rac{Me^{j(\omega t+\phi)}}{Ae^{j\omega t}} = rac{M}{A}e^{j\phi} = rac{1}{A}(b_1+ja_1)$$

The approximated frequency response depends on the input amplitude A

← this operation is called quasi-linearization

 \blacktriangleright For static nonlinearities, the describing function is independent of ω

Example 1 : relay

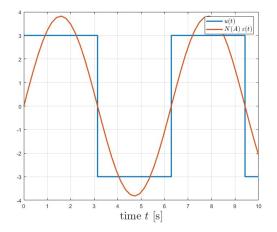


14 / 38

Example 1 : relay

Simulation for : $\omega = 1$, A = 2 and M = 3

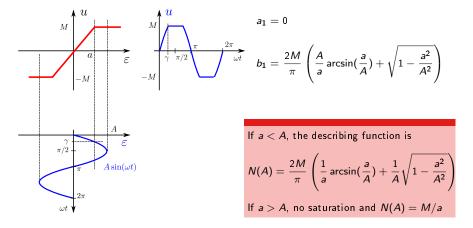
 \hookrightarrow equivalent gain N(A) = 1.909



 \Diamond Keeping in mind that u is then filtered by a low-pass type transfer function

Example 2 : saturation

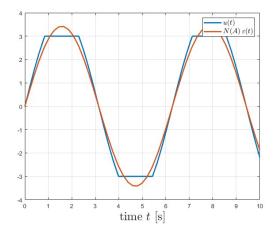
First Fourier coefficients :



Example 2 : saturation

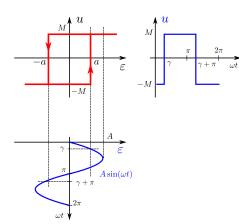
Simulation for : $\omega = 1$, A = 2, M = 3 and a = 1.5

 \hookrightarrow equivalent gain N(A) = 1.711



 \Diamond Keeping in mind that u is then filtered by a low-pass type transfer function

Example 3 : hysteresis



First Fourier coefficients

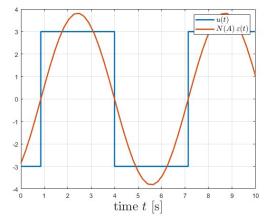
$$a_{1} = -\frac{4M}{\pi}\frac{a}{A}$$
$$b_{1} = \frac{4M}{\pi}\sqrt{1-\frac{a^{2}}{A^{2}}}$$

If a < A, the describing function is $N(A) = \frac{4M}{A\pi} \left(\sqrt{1 - \frac{a^2}{A^2}} - j \frac{a}{A} \right)$

Example 3 : hysteresis

Simulation for : $\omega = 1$, A = 2, M = 3 and a = 1.5

$$\hookrightarrow$$
 equivalent gain $N(A) = 1.26 - 1.43i$, soit $\left\{ egin{array}{c} M = 1.909 \\ \phi = -0.848 \end{array}
ight.$



 \Diamond Keeping in mind that u is then filtered by a low-pass type transfer function

Computing describing functions

Different methods to compute a describing function of a nonlinear element

 $u = f(\varepsilon)$

- Analytical calculation. when the nonlinear characteristic is known, explicit and simple enough to calculate the integrals (a₁ and b₁); the nonlinearity could also be approximated by piecewise linear functions. Result is an analytical expression of N(A, ω).
- Numerical integration. when the nonlinear characteristic is given by a graph / table of values, integrals numerically computed with a discrete sums of surface over small intervals (numerical algorithm). Result is a plot of N w.r.t A and ω.
- Experimental evaluation. Interesting when no information about the nonlinearity (or too complex), but can be isolated and excited with sinusoidal inputs for various A and ω; compute the ratio of amplitude and phase shift with the output. Result is a plot of N w.r.t A and ω.

Chapitre 4 : Describing functions └─Self-oscillations

Sommaire

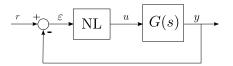
• Introduction

e Harmonic linearization

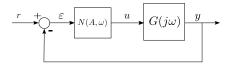
Self-oscillations

Closed-loop system analysis

Let's go back to closed-loop system (with r = 0)



Assuming the system is oscillating, the closed-loop can be approximated by



 \Diamond The output must satisfy the relationship : $y = G(j\omega)N(A,\omega)(-y)$

Existence of limit cycles

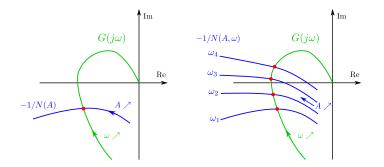
It implies that

$$G(j\omega)N(A,\omega)+1=0 \qquad \Leftrightarrow \qquad G(j\omega)=-rac{1}{N(A,\omega)}$$

- If some solutions exist, there is (are) limit cycle(s) with amplitude A and frequency \u03c6 (approximately)
- if not, there is no limit cycle
- lt is 2 nonlinear equations with 2 variables (A and ω)
- May be very difficult to solve analytically for high-order systems
- Usually, graphical approach
 - \hookrightarrow plot $G(j\omega)$ and $-1/N(A,\omega)$ in the complex plane
 - \hookrightarrow find the intersection points

Existence of limit cycles : graphical method

Illustration of the method when the describing function depends only on the amplitude A (left) and on both amplitude A and frequency ω (right)

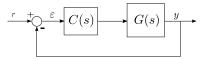


Note that in both cases there could be several intersection points

Stability of limit cycles

Previous slides were about **detecting existence** of limit cycles. What about their **stability**?

Before that, let's recall the Nyquist criterion



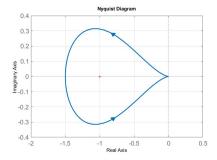
Characteristic equ. of the closed-loop system : 1 + C(s)G(s) = 0 (or CG = -1)

Nyquist criterion

Procedure :

- **b** Draw in the complex plane C(s)G(s), s following the Nyquist path
- Determine the number N of clockwise encirclement around the point (-1, 0)
- Determine the number P of unstable poles of C(s)G(s)
- Then Z = N + P is the number of unstable poles of the closed-loop system

Example : with
$$C(s) = 1$$
 and $G(s) = \frac{3}{(s+2)(s-1)}$



• Number of clockwise encirclement around the point (-1,0) : N=-1

Number of unstable poles of C(s)G(s) : P = 1

• Then, there is Z = N + P = 0 unstable pole for the closed-loop system

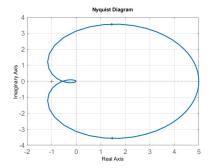
 \hookrightarrow closed-loop system stable

Simplified version : when C(s)G(s) has no unstable pole

(critère de Revers)

 \Rightarrow no encirclement around the point (-1,0) \rightarrow closed-loop system stable

Example with
$$C(s)G(s)=rac{10}{(s+1)^2(s+2)}$$



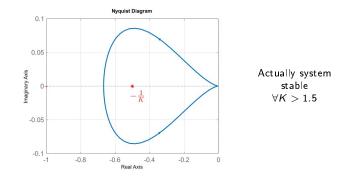
Chapitre 4 ∶ Describing functions └─ Self-oscillations

Simple extension : as a function of a tunable gain K in the loop

The characteristic equation : 1 + KC(s)G(s) = 0 or $C(s)G(s) = -\frac{1}{K}$

 \Rightarrow check the encirclement around the point (-1/K, 0)

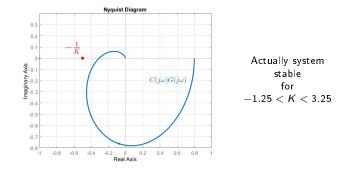
Example with
$$C(s)G(s)=rac{1}{(s+1.5)(s-1)}$$
 and $K=2$



Chapitre 4 : Describing functions └─Self-oscillations

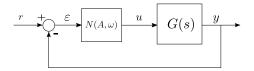
Another Example with
$$C(s)G(s) = \frac{1}{s^3 + 2s^2 + 2.25s + 1.25}$$
 and $K = 2$

 $(poles = -1 and -0.5 \pm j)$



Stability of limit cycles

Back to closed-loop system with a describing function :



Characteristic equation $1 + N(A, \omega)G(s) = 0$ or $G(s) = -\frac{1}{N(A, \omega)}$

• Check encirclement around the point
$$\left(R_e[-\frac{1}{N}], I_m[-\frac{1}{N}]\right)$$

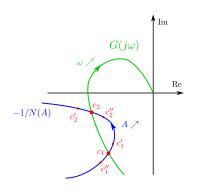
▶ By assumption G(s) is stable \rightarrow no unstable pole

• Check if critical points is on left or right of $G(j\omega)$ locus when $\omega \nearrow$

Chapitre 4 : Describing functions └─ Self-oscillations

Graphical analysis

Consider a system where two limit cycles are predicted

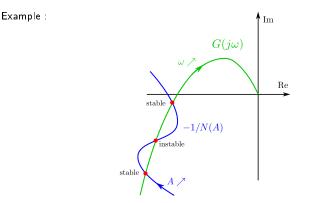


- At c₁, there is a limit cycle with an amplitude A₁ and a frequency ω₁
 - if a slight disturbance increases A; we move to c'₁; the system is unstable; the amplitude continues to increase; we move along curve -1/N(A) toward c₂
 - if a slight disturbance decreases A; we move to c₁"; the system is stable; the amplitude continues to decrease; we move along curve -1/N(A) toward 0
 - the limit cycle is unstable
- At c₂, there is a limit cycle with an amplitude A₂ and a frequency ω₂
 - if a slight disturbance increases A; we move to c_2^\prime ; the system is stable; the amplitude decreases; we move back toward c_2
 - if a slight disturbance decreases A; we move to c₂^{''}; the system is unstable; the amplitude increases; we move back toward c₂
 - the limit cycle is stable

Stability condition (graphical)

Loeb criterion

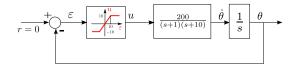
A limit cycle of amplitude A_0 and frequency ω_0 is stable if the intersection point is such that along the nyquist plot of $G(j\omega)$ as ω increases, the direction of increasing A along the critical curve -1/N(A) is toward the left.



Chapitre 4 : Describing functions └─Self-oscillations

Example

Simple control of a DC motor with a saturation



What is the describing function of the nonlinearity?

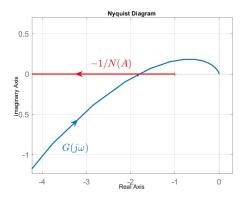
- Show that a limit cycle exists.
- What would be the approximated amplitude and frequency of the self-oscillations?
- Is the limit cycle stable?

Chapitre 4 : Describing functions └─Self-oscillations

Example

• Describing function :
$$N(A) = \frac{2}{\pi} \arcsin\left(\frac{10}{A}\right) + \frac{20}{A\pi}\sqrt{1 - \frac{100}{A^2}}$$
 (if $A > 10$)

▶ Nyquist plot of $G(j\omega)$ and -1/N(A); note that N(10) = 1 and $N(+\infty) = 0$

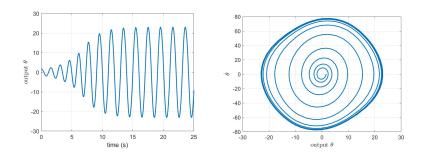


From the plot, $\omega = 3.22 \text{ rad/s} (T = 1.95 \text{ s})$ and A = 22.1

The limit cycle is stable

Example

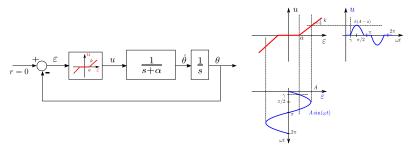
Simulation of the closed loop : ouput (left) and phase plane (right)



Chapitre 4 : Describing functions └─Self-oscillations

Exercise

Simple control of a DC motor with a dead zone



What is the describing function of the nonlinearity?

- > Draw a sketch of the nyquist plot of $G(j\omega)$ and the critical locus -1/N(A).
- Does a limit cycle exists?

Solution

