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Introduction

Introduction

I Describing functions method is an extension of harmonic method for some
nonlinearities in a closed-loop system

↪→ in french, it is called : méthode du premier harmonique

I It approximates a nonlinear element by a �equivalent� linear term

↪→ harmonic linearization

I Method particularly used to predict limit cycle in a closed-loop system
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Introduction

Framework

In this chapter, we only consider closed-loop system of the form

Assumptions :

I The nonlinear element NL is a separable term

I It is time-invariant

I The linear term, G(s), is stable and a low-pass �lter type (known as �ltering

hypothesis)
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Nonlinear element : example 1

Saturation

I Linear for ε ∈ [−δ , δ], constant for large values of |ε|.

I Often models actuator limitations

↪→ power ampli�ers, motors, servo-valve for �ow control

I Usually caused by limits on component size, properties of materials, available
power, mechanical con�guration...
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Nonlinear element : example 2

Dead zone

I u is zero until the magnitude of the input exceeds some threshold |ε| > δ.

I Usually characterize actuators (valve, motor...) that are unresponsive to low input
signals

I For instance, it models static friction on motor shaft
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Nonlinear element : example 3

Hysteresis

I ...

I Examples 1 and 2 are static nonlinearities, also named memoryless

↪→ the output solely depends on the instantaneous input value

I Hysteresis output depends on the instantaneous and past input values

↪→ nonlinear element with memory
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Harmonic linearization

Frequency response

Recall for linear case : The response to a sine function is also a sine function
(at steady state)

↪→ with the same frequency ω but di�erent amplitude and phase shift w.r.t. ω

For nonlinear case : The response is a periodic signal
(at steady state)

↪→ y(t) = y(t + T ), then a Fourier series expansion can be used
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Harmonic linearization

First harmonic approximation

In the closed-loop system, let's assume there is a limit cycle and the oscillating signal is

ε(t) = A sin(ωt) ( ≡ −y(t) if reference is 0 )

Fourier series expansion of the nonlinear component response

u(t) = a0 +
∞∑
n=1

an cos(nωt) + bn sin(nωt)

I Fourier coe�cients a0, an and bn are functions of A and ω

I if the nonlinearity is odd, a0 = 0 (often the case)
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Harmonic linearization

First harmonic approximation

The �ltering hypothesis implies all harmonics are �ltered out and only the fundamental
component is considered :

u(t) ' a1 cos(ωt) + b1 sin(ωt)

' M sin(ωt + φ)

' M e j(ωt+φ)

with

a1(A, ω) =
ω

π

∫
(T )

u(t) cos(ωt) dt b1(A, ω) =
ω

π

∫
(T )

u(t) sin(ωt) dt

M(A, ω) =
√

a2
1
+ b2

1
φ(A, ω) = arctan( a1

b1
)
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Harmonic linearization

Describing function

Similarly to linear case, frequency response = ratio sinusoidal output / sinusoidal input

The describing function of a nonlinear element is the complex ratio of the fundamental
component of the nonlinearity by the input sinusoid

N(A, ω) =
Me j(ωt+φ)

Ae jωt
=

M

A
e jφ =

1

A
(b1 + ja1)

I The approximated frequency response depends on the input amplitude A

↪→ this operation is called quasi-linearization

I For static nonlinearities, the describing function is independent of ω
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Harmonic linearization

Example 1 : relay

First Fourier coe�cients :

a1 = 0

b1 =
4M

π

The describing function is

N(A) =
4M

Aπ
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Harmonic linearization

Example 1 : relay

Simulation for : ω = 1, A = 2 and M = 3

↪→ equivalent gain N(A) = 1.909

♦ Keeping in mind that u is then �ltered by a low-pass type transfer function
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Harmonic linearization

Example 2 : saturation

First Fourier coe�cients :

a1 = 0

b1 =
2M

π

A

a
arcsin(

a

A
) +

√
1−

a2

A2



If a < A, the describing function is

N(A) =
2M

π

1

a
arcsin(

a

A
) +

1

A

√
1−

a2

A2


If a > A, no saturation and N(A) = M/a
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Harmonic linearization

Example 2 : saturation

Simulation for : ω = 1, A = 2, M = 3 and a = 1.5

↪→ equivalent gain N(A) = 1.711

♦ Keeping in mind that u is then �ltered by a low-pass type transfer function
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Harmonic linearization

Example 3 : hysteresis

First Fourier coe�cients :

a1 = −
4M

π

a

A

b1 =
4M

π

√
1−

a2

A2

If a < A, the describing function is

N(A) =
4M

Aπ

√1−
a2

A2
− j

a

A


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Harmonic linearization

Example 3 : hysteresis

Simulation for : ω = 1, A = 2, M = 3 and a = 1.5

↪→ equivalent gain N(A) = 1.26− 1.43i , soit

{
M = 1.909
φ = −0.848

♦ Keeping in mind that u is then �ltered by a low-pass type transfer function
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Harmonic linearization

Computing describing functions

Di�erent methods to compute a describing function of a nonlinear element

u = f (ε)

I Analytical calculation. when the nonlinear characteristic is known, explicit and
simple enough to calculate the integrals (a1 and b1) ; the nonlinearity could also
be approximated by piecewise linear functions. Result is an analytical expression
of N(A, ω).

I Numerical integration. when the nonlinear characteristic is given by a graph /
table of values, integrals numerically computed with a discrete sums of surface
over small intervals (numerical algorithm). Result is a plot of N w.r.t A and ω.

I Experimental evaluation. Interesting when no information about the nonlinearity
(or too complex), but can be isolated and excited with sinusoidal inputs for
various A and ω ; compute the ratio of amplitude and phase shift with the output.
Result is a plot of N w.r.t A and ω.
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Self-oscillations

Closed-loop system analysis

Let's go back to closed-loop system (with r = 0)

Assuming the system is oscillating, the closed-loop can be approximated by

♦ The output must satisfy the relationship : y = G(jω)N(A, ω)(−y)
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Self-oscillations

Existence of limit cycles

It implies that

G(jω)N(A, ω) + 1 = 0 ⇔ G(jω) = −
1

N(A, ω)

I If some solutions exist, there is (are) limit cycle(s) with amplitude A and
frequency ω (approximately)

I if not, there is no limit cycle

I It is 2 nonlinear equations with 2 variables (A and ω)

I May be very di�cult to solve analytically for high-order systems

I Usually, graphical approach

↪→ plot G(jω) and −1/N(A, ω) in the complex plane

↪→ �nd the intersection points
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Self-oscillations

Existence of limit cycles : graphical method

Illustration of the method when the describing function depends only on the amplitude
A (left) and on both amplitude A and frequency ω (right)

Note that in both cases there could be several intersection points
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Self-oscillations

Stability of limit cycles

Previous slides were about detecting existence of limit cycles. What about their
stability ?

Before that, let's recall the Nyquist criterion

Characteristic equ. of the closed-loop system : 1+ C(s)G(s) = 0 (or CG = −1)

Nyquist criterion

Procedure :

I Draw in the complex plane C(s)G(s), s following the Nyquist path

I Determine the number N of clockwise encirclement around the point (−1, 0)

I Determine the number P of unstable poles of C(s)G(s)

I Then Z = N + P is the number of unstable poles of the closed-loop system
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Self-oscillations

Example : with C(s) = 1 and G(s) =
3

(s + 2)(s − 1)

I Number of clockwise encirclement around the point (−1, 0) : N = −1

I Number of unstable poles of C(s)G(s) : P = 1

I Then, there is Z = N + P = 0 unstable pole for the closed-loop system

↪→ closed-loop system stable
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Self-oscillations

Simpli�ed version : when C(s)G(s) has no unstable pole (critère de Revers)

⇒ no encirclement around the point (−1, 0) → closed-loop system stable

Example with C(s)G(s) =
10

(s + 1)2(s + 2)
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Self-oscillations

Simple extension : as a function of a tunable gain K in the loop

The characteristic equation : 1+ KC(s)G(s) = 0 or C(s)G(s) = −
1

K

⇒ check the encirclement around the point (−1/K , 0)

Example with C(s)G(s) =
1

(s + 1.5)(s − 1)
and K = 2

Actually system
stable
∀K > 1.5
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Self-oscillations

Another Example with C(s)G(s) =
1

s3 + 2s2 + 2.25s + 1.25
and K = 2

(poles = −1 and −0.5 ± j)

Actually system
stable
for

−1.25 < K < 3.25
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Self-oscillations

Stability of limit cycles

Back to closed-loop system with a describing function :

Characteristic equation : 1+ N(A, ω)G(s) = 0 or G(s) = − 1

N(A,ω)

I Check encirclement around the point

(
Re [− 1

N
], Im[− 1

N
]

)
I By assumption G(s) is stable → no unstable pole

I Check if critical points is on left or right of G(jω) locus when ω ↗
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Self-oscillations

Graphical analysis

Consider a system where two limit cycles are predicted

I At c1, there is a limit cycle with an amplitude A1

and a frequency ω1

- if a slight disturbance increases A ; we move to c′1 ;
the system is unstable ; the amplitude continues to
increase ; we move along curve −1/N(A) toward c2

- if a slight disturbance decreases A ; we move to c′′1 ;
the system is stable ; the amplitude continues to
decrease ; we move along curve −1/N(A) toward 0

- the limit cycle is unstable

I At c2, there is a limit cycle with an amplitude A2

and a frequency ω2

- if a slight disturbance increases A ; we move to c′2 ;
the system is stable ; the amplitude decreases ; we
move back toward c2

- if a slight disturbance decreases A ; we move to
c′′2 ; the system is unstable ; the amplitude
increases ; we move back toward c2

- the limit cycle is stable
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Self-oscillations

Stability condition (graphical)

Loeb criterion

A limit cycle of amplitude A0 and frequency ω0 is stable if the intersection point is
such that along the nyquist plot of G(jω) as ω increases, the direction of increasing A
along the critical curve −1/N(A) is toward the left.

Example :
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Self-oscillations

Example

Simple control of a DC motor with a saturation

I What is the describing function of the nonlinearity ?

I Show that a limit cycle exists.

I What would be the approximated amplitude and frequency of the
self-oscillations ?

I Is the limit cycle stable ?
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Self-oscillations

Example

I Describing function : N(A) =
2

π
arcsin

(
10

A

)
+

20

Aπ

√
1−

100

A2
(if A > 10)

I Nyquist plot of G(jω) and −1/N(A) ; note that N(10) = 1 and N(+∞) = 0

I From the plot, ω = 3.22 rad/s (T = 1.95 s) and A = 22.1

I The limit cycle is stable
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Self-oscillations

Example

Simulation of the closed loop : ouput (left) and phase plane (right)
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Self-oscillations

Exercise
Simple control of a DC motor with a dead zone

I What is the describing function of the nonlinearity ?

I Draw a sketch of the nyquist plot of G(jω) and the critical locus −1/N(A).

I Does a limit cycle exists ?
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Self-oscillations

Solution

I Describing function : N(A) =
2k

π

π

2
− arcsin

(
a

A

)
−

a

A

√
1−

a2

A2

 (if A > a)

I Sketch of Nyquist plot of G(jω) and −1/N(A) ; note that N(a) = 0 and
N(+∞) = k

*

I No limit cycle can exist
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Self-oscillations

Simulation of the closed loop : ouput (left) and phase plane (right)

with : a = 0.5, k = 1 and α = 0.2
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