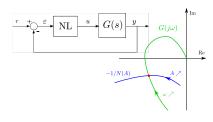
4AESE - Analyse des Systèmes Non-Linéaires

Chapitre 4: Describing functions

Yassine ARIBA



version : 11-2022

Chapitre 4 : Describing functions

└─ Introduction

Sommaire

- Introduction
- Harmonic linearization
- Self-oscillations

Chapitre 4: Describing functions

Sommaire

- Introduction
- Harmonic linearization
- Self-oscillations

/ 38

Chapitre 4: Describing functions

Introduction

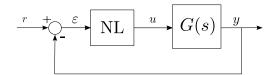
- Describing functions method is an extension of harmonic method for some nonlinearities in a closed-loop system
 - → in french, it is called: méthode du premier harmonique
- ▶ It approximates a nonlinear element by a "equivalent" linear term
 - → harmonic linearization
- ▶ Method particularly used to predict limit cycle in a closed-loop system

3 / 38

└─ Introduction

Framework

In this chapter, we only consider closed-loop system of the form



Assumptions:

- ► The nonlinear element NL is a separable term
- ► It is time-invariant
- ▶ The linear term, G(s), is stable and a low-pass filter type (known as filtering hypothesis)

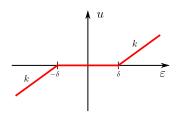
5 / 38

Chapitre 4 : Describing functions

└─ Introduction

Nonlinear element : example 2

Dead zone



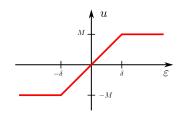
- ightharpoonup u is zero until the magnitude of the input exceeds some threshold $|arepsilon|>\delta$.
- Usually characterize actuators (valve, motor...) that are unresponsive to low input signals
- For instance, it models static friction on motor shaft

Chapitre 4: Describing functions

Introduction

Nonlinear element : example 1

Saturation



- \blacktriangleright Linear for $\varepsilon \in [-\delta \ , \ \delta]$, constant for large values of $|\varepsilon|$.
- ► Often models actuator limitations
 - → power amplifiers, motors, servo-valve for flow control
- Usually caused by limits on component size, properties of materials, available power, mechanical configuration...

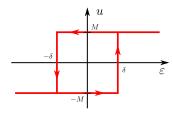
6 / 38

Chapitre 4: Describing functions

☐ Introduction

Nonlinear element : example 3

Hysteresis



- Examples 1 and 2 are static nonlinearities, also named memoryless
 - $\ \hookrightarrow$ the output solely depends on the instantaneous input value
- ▶ Hysteresis output depends on the instantaneous and past input values
 - → nonlinear element with memory

Chapitre 4 : Describing functions Harmonic linearization

Sommaire

- Introduction
- Harmonic linearization
- Self-oscillations

9 / 38

Chapitre 4: Describing functions └─Harmonic linearization

First harmonic approximation

In the closed-loop system, let's assume there is a limit cycle and the oscillating signal is

$$\varepsilon(t) = A\sin(\omega t)$$
 ($\equiv -y(t)$ if reference is 0)

Fourier series expansion of the nonlinear component response

$$u(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

- ▶ Fourier coefficients a_0 , a_n and b_n are functions of A and ω
- ightharpoonup if the nonlinearity is odd, $a_0 = 0$ (often the case)

Chapitre 4: Describing functions

Harmonic linearization

Frequency response

Recall for linear case: The response to a sine function is also a sine function (at steady state)

 \hookrightarrow with the same frequency ω but different amplitude and phase shift w.r.t. ω

$$u(s)$$
 $u(t) = u_0 \sin(\omega t)$
 $F(s)$
 $y(s)$
 $y(t) = y_0 \sin(\omega t + \varphi)$

For nonlinear case: The response is a periodic signal (at steady state)

 $\hookrightarrow y(t) = y(t+T)$, then a Fourier series expansion can be used

$$u(t) = \underbrace{u(t)}_{u_0 \sin(\omega t)} \qquad \boxed{NL} \qquad \underbrace{y(t)}_{y(t) = y(t + 2\omega t)}$$

10 / 38

Chapitre 4: Describing functions

☐ Harmonic linearization

First harmonic approximation

The filtering hypothesis implies all harmonics are filtered out and only the fundamental component is considered:

$$u(t) \simeq a_1 \cos(\omega t) + b_1 \sin(\omega t)$$

 $\simeq M \sin(\omega t + \phi)$
 $\simeq M e^{j(\omega t + \phi)}$

with

$$a_1(A,\omega) = rac{\omega}{\pi} \int_{(\mathcal{T})} u(t) \cos(\omega t) \ dt$$
 $b_1(A,\omega) = rac{\omega}{\pi} \int_{(\mathcal{T})} u(t) \sin(\omega t) \ dt$ $M(A,\omega) = \sqrt{a_1^2 + b_1^2}$ $\phi(A,\omega) = \arctan(rac{a_1}{b_1})$

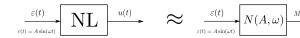
Harmonic linearization

Describing function

Similarly to linear case, frequency response = ratio sinusoidal output / sinusoidal input

The describing function of a nonlinear element is the complex ratio of the fundamental component of the nonlinearity by the input sinusoid

$$N(A,\omega) = rac{Me^{j(\omega t + \phi)}}{Ae^{j\omega t}} = rac{M}{A}e^{j\phi} = rac{1}{A}(b_1 + ja_1)$$



- The approximated frequency response depends on the input amplitude A
 - → this operation is called quasi-linearization
- \blacktriangleright For static nonlinearities, the describing function is independent of ω

13 / 38

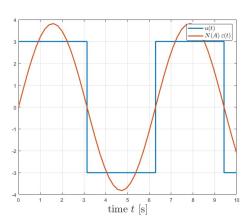
Chapitre 4: Describing functions

└─ Harmonic linearization

Example 1: relay

Simulation for : $\omega = 1$, A = 2 and M = 3

$$\hookrightarrow$$
 equivalent gain $N(A) = 1.909$



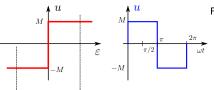
 \Diamond Keeping in mind that u is then filtered by a low-pass type transfer function

Chapitre 4: Describing functions

Harmonic linearization

INSA

Example 1 : relay



 $A\sin(\omega t)$

First Fourier coefficients

$$a_1 = 0$$

$$b_1 = \frac{4N}{\pi}$$

The describing function is

$$N(A) = \frac{4M}{A\pi}$$

14 / 38

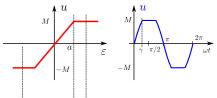
Chapitre 4 Describing functions

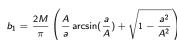
└─ Harmonic linearization

Example 2 : saturation

First Fourier coefficients :

 $a_1 = 0$





If a < A, the describing function is

$$N(A) = \frac{2M}{\pi} \left(\frac{1}{a} \arcsin(\frac{a}{A}) + \frac{1}{A} \sqrt{1 - \frac{a^2}{A^2}} \right)$$

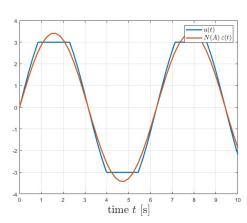
If a > A, no saturation and N(A) = M/a

Harmonic linearization

Example 2: saturation

Simulation for : $\omega = 1$, A = 2, M = 3 and a = 1.5

 \hookrightarrow equivalent gain N(A) = 1.711



 \Diamond Keeping in mind that u is then filtered by a low-pass type transfer function

17 / 38

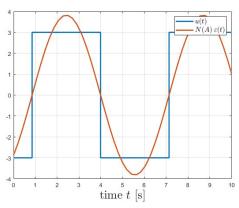
Chapitre 4: Describing functions

Harmonic linearization

Example 3: hysteresis

Simulation for : $\omega=1$, A=2 , M=3 and a=1.5

$$\hookrightarrow$$
 equivalent gain $N(A)=1.26-1.43i$, soit $\left\{egin{array}{c} M=1.909 \\ \phi=-0.848 \end{array}
ight.$

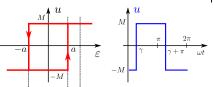


 \Diamond Keeping in mind that u is then filtered by a low-pass type transfer function

Chapitre 4: Describing functions

Harmonic linearization

Example 3: hysteresis



First Fourier coefficients:

$$a_1 = -\frac{4M}{\pi} \frac{a}{4}$$

$$b_1 = \frac{4M}{\pi} \sqrt{1 - \frac{a^2}{A^2}}$$

If a < A, the describing function is

$$N(A) = rac{4M}{A\pi} \left(\sqrt{1 - rac{a^2}{A^2}} - jrac{a}{A}
ight)$$

18 / 38

Chapitre 4: Describing functions

☐ Harmonic linearization

Computing describing functions

Different methods to compute a describing function of a nonlinear element

$$u = f(\varepsilon)$$

- Analytical calculation. when the nonlinear characteristic is known, explicit and simple enough to calculate the integrals $(a_1 \text{ and } b_1)$; the nonlinearity could also be approximated by piecewise linear functions. Result is an analytical expression of $N(A, \omega)$.
- Numerical integration. when the nonlinear characteristic is given by a graph / table of values, integrals numerically computed with a discrete sums of surface over small intervals (numerical algorithm). Result is a plot of N w.r.t A and ω.
- Experimental evaluation. Interesting when no information about the nonlinearity (or too complex), but can be isolated and excited with sinusoidal inputs for various A and ω ; compute the ratio of amplitude and phase shift with the output. Result is a plot of N w.r.t A and ω .

Chapitre 4: Describing functions

Self-oscillations

Sommaire

- Introduction
- Harmonic linearization
- Self-oscillations

21 / 38

Chapitre 4: Describing functions

Self-oscillations

Existence of limit cycles

It implies that

$$G(j\omega)N(A,\omega)+1=0$$
 \Leftrightarrow $G(j\omega)=-rac{1}{N(A,\omega)}$

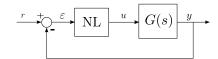
- If some solutions exist, there is (are) limit cycle(s) with amplitude A and frequency ω (approximately)
- ▶ if not, there is no limit cycle
- ▶ It is 2 nonlinear equations with 2 variables (A and ω)
- ► May be very difficult to solve analytically for high-order systems
- Usually, graphical approach
 - \hookrightarrow plot $G(j\omega)$ and $-1/N(A,\omega)$ in the complex plane
 - → find the intersection points

Chapitre 4: Describing functions

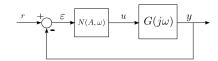
└─ Self-oscillations

Closed-loop system analysis

Let's go back to closed-loop system (with r = 0)



Assuming the system is oscillating, the closed-loop can be approximated by



 \Diamond The output must satisfy the relationship : $y = G(j\omega)N(A,\omega)(-y)$

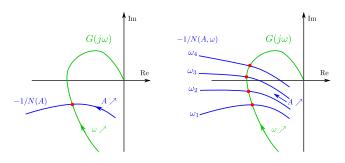
22 / 38

Chapitre 4: Describing functions

└─ Self-oscillations

Existence of limit cycles: graphical method

Illustration of the method when the describing function depends only on the amplitude A (left) and on both amplitude A and frequency ω (right)



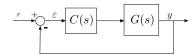
Note that in both cases there could be several intersection points

└─ Self-oscillations

Stability of limit cycles

Previous slides were about **detecting existence** of limit cycles. What about their **stability**?

Before that, let's recall the Nyquist criterion



Characteristic equ. of the closed-loop system 1 + C(s)G(s) = 0 (or CG = -1)

Nyquist criterion

Procedure

- ▶ Draw in the complex plane C(s)G(s), s following the Nyquist path
- \blacktriangleright Determine the number N of clockwise encirclement around the point (-1,0)
- ▶ Determine the number P of unstable poles of C(s)G(s)
- ▶ Then Z = N + P is the number of unstable poles of the closed-loop system

25 / 38

Chapitre 4: Describing functions

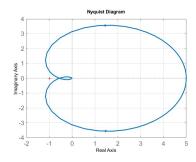
└─ Self-oscillations

Simplified version: when C(s)G(s) has no unstable pole

(critère de Revers)

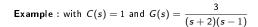
 \Rightarrow no encirclement around the point $(-1,0) \rightarrow$ closed-loop system stable

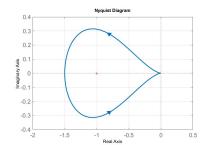
Example with
$$C(s)G(s) = \frac{10}{(s+1)^2(s+2)}$$



Chapitre 4: Describing functions

└ Self-oscillations





- Number of clockwise encirclement around the point (-1,0): N=-1
- Number of unstable poles of C(s)G(s): P=1
- ightharpoonup Then, there is Z=N+P=0 unstable pole for the closed-loop system

 \hookrightarrow closed-loop system stable

26 / 38

INSA

Chapitre 4: Describing functions

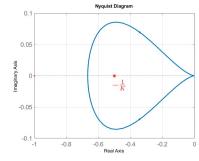
☐ Self-oscillation

Simple extension: as a function of a tunable gain K in the loop

The characteristic equation : 1+KC(s)G(s)=0 or $C(s)G(s)=-rac{1}{K}$

 \Rightarrow check the encirclement around the point (-1/K,0)

Example with
$$C(s)G(s)=rac{1}{(s+1.5)(s-1)}$$
 and $K=2$

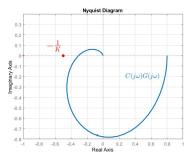


Actually system stable orall K > 1.5

└─ Self-oscillations

Another Example with $C(s)G(s)=rac{1}{s^3+2s^2+2.25s+1.25}$ and K=2

(poles = -1 and $-0.5 \pm j$)



Actually system stable for -1.25 < K < 3.25

29 / 3

Chapitre 4: Describing functions

└─ Self-oscillations

-1/N(A)

Graphical analysis

Consider a system where two limit cycles are predicted

 $G(j\omega)$

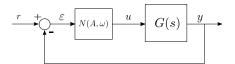
- At c_1 , there is a limit cycle with an amplitude A_1 and a frequency ω_1
 - if a slight disturbance increases A; we move to c_1' ; the system is unstable; the amplitude continues to increase; we move along curve -1/N(A) toward c_2
 - if a slight disturbance decreases A; we move to $c_1^{\prime\prime}$; the system is stable; the amplitude continues to decrease; we move along curve -1/N(A) toward 0
 - the limit cycle is unstable
- At c_2 , there is a limit cycle with an amplitude A_2 and a frequency ω_2
 - if a slight disturbance increases A; we move to c_2' ; the system is stable; the amplitude decreases; we move back toward c_2
 - if a slight disturbance decreases A; we move to $c_2^{\prime\prime}$; the system is unstable; the amplitude increases; we move back toward c_2
 - the limit cycle is stable

Chapitre 4: Describing functions

└─ Self-oscillations

Stability of limit cycles

Back to closed-loop system with a describing function :



Characteristic equation : $1+N(A,\omega)G(s)=0$ or $G(s)=-rac{1}{N(A,\omega)}$

- ightharpoonup Check encirclement around the point $\left(R_{\rm e}[-rac{1}{N}],I_m[-rac{1}{N}]
 ight)$
- **b** By assumption G(s) is stable \rightarrow no unstable pole
- ▶ Check if critical points is on left or right of $G(j\omega)$ locus when $\omega \nearrow$

30 / 38

Chapitre 4: Describing functions

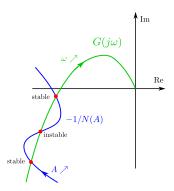
└─ Self-oscillations

Stability condition (graphical)

Loeb criterion

A limit cycle of amplitude A_0 and frequency ω_0 is stable if the intersection point is such that along the nyquist plot of $G(j\omega)$ as ω increases, the direction of increasing A along the critical curve -1/N(A) is toward the left.

Example:

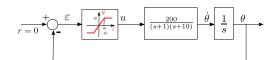


31 / 31

└ Self-oscillations

Example

Simple control of a DC motor with a saturation



- ► What is the describing function of the nonlinearity?
- ► Show that a limit cycle exists.
- What would be the approximated amplitude and frequency of the self-oscillations?
- ► Is the limit cycle stable?

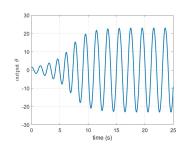
33 / 38

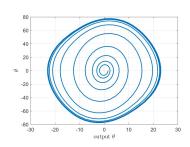
Chapitre 4: Describing functions

Self-oscillations

Example

Simulation of the closed loop: ouput (left) and phase plane (right)





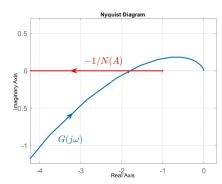
Chapitre 4: Describing functions

└─ Self-oscillations

INSA

Example

- ► Describing function : $N(A) = \frac{2}{\pi} \arcsin\left(\frac{10}{A}\right) + \frac{20}{A\pi}\sqrt{1 \frac{100}{A^2}}$ (if A > 10)
- lacksquare Nyquist plot of $G(j\omega)$ and -1/N(A); note that N(10)=1 and $N(+\infty)=0$



- From the plot, $\omega=3.22~rad/s$ (T=1.95~s) and A=22.1
- ► The limit cycle is stable

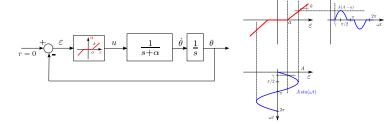
34 / 38

Chapitre 4: Describing functions

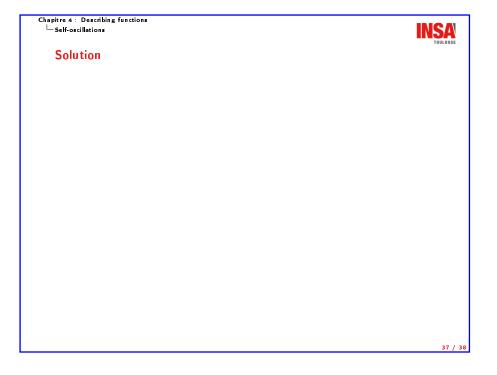
Self-oscillations

Exercise

Simple control of a DC motor with a dead zone



- ► What is the describing function of the nonlinearity?
- ightharpoonup Draw a sketch of the nyquist plot of $G(j\omega)$ and the critical locus -1/N(A).
- ► Does a limit cycle exists?



Chapitre 4: Describing functions Self-oscillations	INSA
	38 / 38