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Introduction

Introduction

» Describing functions method is an extension of harmonic method for some
nonlinearities in a closed-loop system

< in french, it is called : méthode du premier harmonique

» It approximates a nonlinear element by a “equivalent” linear term

< harmonic linearization

» Method particularly used to predict limit cycle in a closed-loop system
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Framework

In this chapter, we only consider closed-loop system of the form

0O NL > G(s) Y

Assumptions :

» The nonlinear element NL is a separable term
P It is time-invariant

> The linear term, G(s), is stable and a low-pass filter type (known as filtering
hypothesis)
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Introduction

Nonlinear element : example 1

Saturation

ML

+ -M

> Linear for ¢ € [-§, ], constant for large values of |e].

» Often models actuator limitations

< power amplifiers, motors, servo-valve for flow control

» Usually caused by limits on component size, properties of materials, available
power, mechanical configuration...
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Nonlinear element : example 2

Dead zone

> u is zero until the magnitude of the input exceeds some threshold |¢| > 4.
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> Usually characterize actuators (valve, motor...) that are unresponsive to low input

signals

» For instance, it models static friction on motor shaft
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Nonlinear element : example 3
Hysteresis

A\ U
M

> .
» Examples 1 and 2 are static nonlinearities, also named memoryless

< the output solely depends on the instantaneous input value

» Hysteresis output depends on the instantaneous and past input values

< nonlinear element with memory
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Frequency response

Recall for linear case : The response to a sine function is also a sine function
(at steady state)

< with the same frequency w but different amplitude and phase shift w.r.t. w

u(s) F(s) y(s)
u(t) = ugsin(wt) y(t) = yo sin(wt + )

For nonlinear case : The response is a periodic signal
(at steady state)

— y(t) = y(t + T), then a Fourier series expansion can be used

u(t) NL y(t)

u(t) = ugsin(wt) y(t) =yt +1)
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First harmonic approximation

®) u(t)
7 4 NL 4.

e(t) = Asin(wt)

In the closed-loop system, let's assume there is a limit cycle and the oscillating signal is
e(t) = Asin(wt) (= —y(t) if reference is 0 )
Fourier series expansion of the nonlinear component response

[ee)
u(t) =ao + Za,, cos(nwt) + by sin(nwt)

n=1

» Fourier coefficients ag, an, and b, are functions of A and w

> if the nonlinearity is odd, ag = 0 (often the case)
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First harmonic approximation

The filtering hypothesis implies all harmonics are filtered out and only the fundamental
component is considered :

u(t) ~ ay cos(wt) + by sin(wt)

1

M sin(wt + ¢)

M ef(wt+d)

R

with

a1 (A w) = %/(T) u(t) cos(wt) dt bi(Aw) = %/(T) u(t) sin(wt) dt

M(A,w) = y/a? + b? #(A,w) = arctan(3})
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Describing function
Similarly to linear case, frequency response = ratio sinusoidal output / sinusoidal input
|

The describing function of a nonlinear element is the complex ratio of the fundamental
component of the nonlinearity by the input sinusoid

Mei(wt+¢) M . 1 .
NA W) = —om— = ¢ = 2(bi +ja1)
e(t) NL u(t) ~ e(t) M sin(wt + ¢)
— > ~~ — N(A w) —
£(t) = Asin(wt) &(t) = Asin(wt) ’

» The approximated frequency response depends on the input amplitude A

< this operation is called quasi-linearization

> For static nonlinearities, the describing function is independent of w
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Harmonic linearization

Example 1 : relay

u u
M M
X T 2m
e 'n/z wt
-M -M
| A
3
Asin(wt)
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First Fourier coefficients :

ag =0

by = =

The describing function is

4AM
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Example 1 : relay
Simulation for : w=1, A=2and M =3
— equivalent gain N(A) = 1.909

time ¢ [s]

O Keeping in mind that v is then filtered by a low-pass type transfer function
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Example 2 : saturation

u u
M M
N us
—M
A
v 3
w/2 4
7r/ Asin(wt)
<.27T
wt
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First Fourier coefficients :

31:0

S\ 2M (A [ &
“ € v o/ “hopy =22 7arcsin(i)+ 1- iz
| M T a A A

If a < A, the describing function is

2M (1 ., a 1 a2
N(A):T ;arcsm(z)+z I_E

If a > A, no saturation and N(A) = M/a
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Harmonic linearization

Example 2 : saturation
Simulation for : w=1, A=2, M=3and a=15
< equivalent gain N(A) =1.711

il ]
N/
0 1 2 3 4 5 6 7 8 9 10
time ¢ [s]

O Keeping in mind that u is then filtered by a low-pass type transfer function
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Example 3 : hysteresis

First Fourier coefficients :

U U
M M o= M2
™ o ™A
—a al z T vt
by — 4M 1 a2
M M= - A2
A
3 e If a < A, the describing function is
] Asin(wt) N(A) _ 4M 1 a2 .a
< = Y= i3
| o
wt

A
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Harmeonic linearization

Example 3 : hysteresis
Simulation for : w=1, A=2, M=3and a=1.5

M = 1.909

< equivalent gain N(A) =1.26 — 1.43/, soit { 6= —0.848

A\

NS

0 1 2 3 4 5 6 7 8 9 10
time ¢ [s]

O Keeping in mind that v is then filtered by a low-pass type transfer function
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Computing describing functions

Different methods to compute a describing function of a nonlinear element

u=f(e)

» Analytical calculation. when the nonlinear characteristic is known, explicit and
simple enough to calculate the integrals (a3 and by); the nonlinearity could also
be approximated by piecewise linear functions. Result is an analytical expression
of N(A,w).

> Numerical integration. when the nonlinear characteristic is given by a graph /
table of values, integrals numerically computed with a discrete sums of surface
over small intervals (numerical algorithm). Result is a plot of N w.r.t A and w.

> Experimental evaluation. Interesting when no information about the nonlinearity
(or too complex), but can be isolated and excited with sinusoidal inputs for

TOULOUSE

various A and w; compute the ratio of amplitude and phase shift with the output.

Result is a plot of N w.r.t A and w.
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Closed-loop system analysis

Let's go back to closed-loop system (with r = 0)

Assuming the system is oscillating, the closed-loop can be approximated by

G(jw)

¢ The output must satisfy the relationship : y = G(jw)N(A,w)(—y)
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Self-oscillations
Existence of limit cycles
It implies that

1

CUIN(AW +1=0 & Glw)=—po—s

> If some solutions exist, there is (are) limit cycle(s) with amplitude A and
frequency w (approximately)

> if not, there is no limit cycle

> It is 2 nonlinear equations with 2 variables (A and w)

> May be very difficult to solve analytically for high-order systems

» Usually, graphical approach
— plot G(jw) and —1/N(A,w) in the complex plane

< find the intersection points
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Existence of limit cycles : graphical method
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Ilustration of the method when the describing function depends only on the amplitude

A (left) and on both amplitude A and frequency w (right)

Im

Re

Note that in both cases there could be several intersection

Im

Re

points
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Stability of limit cycles

Previous slides were about detecting existence of limit cycles. What about their
stability ?

Before that, let's recall the Nyquist criterion

IO C(s) —— Gls)

Characteristic equ. of the closed-loop system : 1 4+ C(s)G(s) =0 (or CG = —1)

Nyquist criterion

A

TOULOUSE

Procedure :
> Draw in the complex plane C(s)G(s), s following the Nyquist path

> Determine the number N of clockwise encirclement around the point (—1,0)
> Determine the number P of unstable poles of C(s)G(s)

» Then Z = N + P is the number of unstable poles of the closed-loop system
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Example : with C(s) =1 and G(s) = M%m

Nyquist Diagram

o

Imaginary Axis

- 0
Real Axis

»> Number of clockwise encirclement around the point (—1,0) : N = —1
» Number of unstable poles of C(s)G(s) : P =1
» Then, there is Z = N 4+ P = 0 unstable pole for the closed-loop system

< closed-loop system stable

INSA
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Simplified version : when C(s)G(s) has no unstable pole

(critére de Revers)

= no encirclement around the point (—1,0) — closed-loop system stable

10

Example with C(s)G(s) = Gr1(s+2)

Nyquist Diagram

Imaginary Axis

-2 -1 0 1 2 3 4 5
Real Axis

\

TOULOUSE
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Self-oscillations
Simple extension : as a function of a tunable gain K in the loop

1
The characteristic equation : 1 + KC(s)G(s) =0 or C(s)G(s) = %
= check the encirclement around the point (—1/K,0)

1

Example with C(s)G(s) = m

and K =2

Nyquist Diagram

0.1
0.05
£ Actually system
5 o0 * stable
=) 1
g K VK > 15
-0.05
-0.1
-1 -0.8 -0.6 -0. -0.2 0
Real Axis
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Another Example with C(s)G(s) =
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1
s3 +2s2 42,255 4+ 1.25

and K =2

Nyquist Diagram

Actually system
stable
for
—-125 < K <3.25

Clw)G(jw)

(poles = —1 and —0.5 £ ))
0.3
0.2
1
01 —rt
K
F04
z
§02
E‘-w
0.4
05
06
07
08
4 08 06 04 02

Real Axis
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Stability of limit cycles

Back to closed-loop system with a describing function :

”

oS Vi e G(s) [

Characteristic equation : 1 + N(A,w)G(s) =0 or G(s)= —m

> Check encirclement around the point (Re[fﬁ], Im[fﬁ])

> By assumption G(s) is stable — no unstable pole

» Check if critical points is on left or right of G(jw) locus when w *
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Graphical analysis
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Consider a system where two limit cycles are predicted

Im

Re

> At c1, there is a limit cycle with an amplitude A;
and a frequency w;

- if a slight disturbance increases A; we move to c{ H
the system is unstable ; the amplitude continues to
increase ; we move along curve —1/N(A) toward c2

- if a slight disturbance decreases A; we move to c;’ ;
the system is stable; the amplitude continues to
decrease ; we move along curve —1/N(A) toward 0

- the limit cycle is unstable

» At ¢z, there is a limit cycle with an amplitude As
and a frequency w>

- if a slight disturbance increases A; we move to c; ;
the system is stable; the amplitude decreases; we
move back toward c,

- if a slight disturbance decreases A; we move to
c;’ ; the system is unstable; the amplitude
increases; we move back toward c;

- the limit cycle is stable
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Stability condition (graphical)

A limit cycle of amplitude Ap and frequency wy is stable if the intersection point is
such that along the nyquist plot of G(jw) as w increases, the direction of increasing A
along the critical curve —1/N(A) is toward the left.

Example : Im

stable

—1/N(A)

instable

stable

A
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Example

Simple control of a DC motor with a saturation

+ € nT;— u 200 6 [4
=0 a _/| [ (s+1)(s+10) >

> What is the describing function of the nonlinearity ?

» Show that a limit cycle exists.

» What would be the approximated amplitude and frequency of the
self-oscillations ?

> Is the limit cycle stable?
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Example

2 10 20 100
» Describing function : N(A) = — arcsin (—) + —4/1— el (if A>10)

T A Ar
> Nyquist plot of G(jw) and —1/N(A); note that N(10) =1 and N(+o0) =0

Nyquist Diagram

0.5

SUN@) TN
0 ]

aginary Axis

Imi
=

-1 0

4 -3

Reaf Axis

> From the plot, w =3.22 rad/s (T =1.955s) and A =22.1

» The limit cycle is stable
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Example

Simulation of the closed loop : ouput (left) and phase plane (right)

30 80
20 60
40

20

-20

-40

-20
-60

-30 -80
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0 5 10 15 20 25 -30 -20 -10 0
time (s) output #

10

20
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Exercise
Simple control of a DC motor with a dead zone

™
&

w

o A

<( Asin(wt)

wt

» What is the describing function of the nonlinearity ?
> Draw a sketch of the nyquist plot of G(jw) and the critical locus —1/N(A).

» Does a limit cycle exists ?
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Solution
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