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Problem statement

Consider a system
x = f(x, u)

State feedback stabilization problem

Design a control law u = ¢(x) such that the origin x = 0 is an asymptotically stable
equilibrium point for the closed-loop system

x = f(x, $(x))

> u = ¢(x) is a static feedback, a memoryless function of x

» Dynamic feedback : u = ¢(x, z), with z a state of a dynamic system z = g(x, z)
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A different equilibrium point may be stabilized : xeq

— It requires the existence of a steady-state control ueq such that

0 = f(Xeq; Ueq)

Apply the change of variable
X5 = X — Xeg and Us = U — Ueg

and we have
)'<5 = f(Xeq =+ Xxs, Ueq + U5) £ f(;(X(;, U5)

with f5(0,0) = 0.
» the previous formulation is retrieved

> the control us = ¢(xs) is to be designed
» then, the overall control is u = ¢(x5) + Ueq
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Consider a hydraulic system with two tanks.
Dynamical model of liquid levels :

hy = 0.01u; — 0.05 sign(hy — ha)/20[h1 — ha|

ha = 0.05 sign(hy — h2)~/20[hy — h2| — 0.05+/20 ha

Desired liquid level hyjeq = 0.9m

» At the equilibrium :

{u1= 5./20[h — bz N

hy = 2hs

> Defining x = h — heq and u = u1 — U1eq, NewW system :

INSA

TOULOUSE

{

Uieq
hzeq

15
0.45

X1 = 0.01u + 0.15 — 0.05 sign(x1 — x2 + 0.45)1/20|x1 — x> + 0.45]
%» = 0.05 sign(xz — x2 + 0.45)1/20[x3 — x2 + 0.45] — 0.05+/20 (x2 + 0.45)

> with the equilibrium point at the origin x =0 and u = 0.
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Linearization

For linear time invariant systems

x = Ax + Bu

State feedback control : v = —Kx

> Resulting closed-loop system

%= (A-BK)x

» Closed-loop system asymptotically stable iff A — BK is Hurwitz

> Several systematic methods to design gain K
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Linearization

As for input free systems, nonlinear systems can be linearized around (x =0, u = 0)
(equilibrium point)

x = f(x,u) = x = Ax + Bu

with
of of
A= —(x,u) and B= —(x,u)
Ox x=0,u=0 du x=0,u=0
> A linear state feedback u = —Kx can be designed with linear tools.

» The origin is still an equilibrium point for the closed-loop system
x = f(x, —Kx)
> For a small enough x, the origin is locally stabilized.

> A Lyapunov function may be used to estimate the region of attraction
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Example

We want to stabilize the scalar system

. linearization .
x=x*+u _— X=u

easily stabilized by control law u = —kx, kK > 0
» The origin is still an equilibrium point for the closed-loop system

% = —kx + x>

» For a small enough x, the origin is asymptotically stable.

> With the Lyapunov function V = %xz, an estimation of the region of attraction
is the set {|x| < k}

> Actually, the region of attraction is the set {x < k}
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Introductory example

Back to the previous scalar system

x=x>+u

> The linear state feedback u = —kx, k > 0, ensures local asymptotic stability

x = —kx + x? (closed-loop)

> The nonlinear state feedback
_ 2
u=—kx — x°, k>0,
ensures global stabilization

x = —kx (closed-loop — linearized)

< The control has canceled the nonlinearity
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Feedback linearization

I —
Consider nonlinear system of the form (affine in u)

x = f(x) + g(x)u with £(0) =0, x € R", u € R”
Assume a diffeomorphism T(x) on a set® D, with T(0) = 0, such that the change of
variable transforms the system into

z=Az+B [w(x) + 'y(x)u] with v(x) a nonsingular matrix Vx € D

The nonlinear state feedback
-1
u=- (x)(—w(x)—i—v)
cancels the nonlinearity and converts the system into

z=Az+ Bv

< a linear system with a new control variable v

1. Let D be a domain of R” including the origin
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> The origin z = 0 can be stabilized by (exponentially stable)
v=—-Kz
» In x—coordinates, the control becomes
u=7"100) (= () - KT(x))

> |t can be shown that the x—coordinates dynamic also has the exponential
stability property in the neighborhood of x = 0

» Feedback linearization is based on exact mathematical cancellation of nonlinear
terms

< requires a very good knowledge of the model

» Some nonlinear terms may be “good” terms and are helpful for stabilization
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Example 1
Consider system
o [asm(;(z)} n [0} u with a > 0

—X3

> On D = {|x2] < m/2}, the origin is the unique equilibrium point £(0,0) =0

> Open loop simulation with u = 0 (with a=5 and xo = [1 0.5]")

W2R\Val

—I1
-15
L2
-20
0 1 2 3 4 5 6 7 8 9 10
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Design the control law

> Change of variables

_ _ X1 - . -
z=T(x) = L sin(xz)} T(x) being a diffeomorphism on D

> New system
. 0 1 0
z= [0 0}2—&- {1} acos(xz)(—xlz—I—u)

» with control law v = X12 + ﬁv, we have

=0 o=+ [3]v

— easy to place poles (it's a control companion form)
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Simulations

In z—coordinates, control law :

Results in the closed-loop system

. _[o 1
zZ = _1 ) z

(a=5and xo =[10.5]7)

INSA
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In x—coordinates, control law :

1
u=x2— ——KT(x)
acos xz

Results in the closed-loop system

. [ asin(x)

1
" acosxa KT(X)i|
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Example 2

Consider system

x=ax—b3+u with a, b >0

> First stabilizing state feedback u = —(k + a)x + x3

— closed-loop — x = —kx

> Second stabilizing state feedback u = —(k + a)x

— closed-loop — x = —kx — bx3

> Lyapunov analysis : V = 1x?
V:X(—kx—bx3> = —kx® —bx* <0

= global asymptotic stability

17 / 26



Chapitre 5 : State Feedback Stabilization

L Feedback linearization

Simulations

INSA

TOULOUSE

—u=—(k+a)z+az°
—u=—(k+a)

(a=b=1, k=2and xo = 10)
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Backstepping

It is a nonlinear state feedback control design method

Consider nonlinear system of the form

{ X = A(xa) + a1(a)x with x1 ER™, x2 €R, u€R

X2 = fa(x1,x2) + g2(x1,x2)u

Sort of cascade connection of two subsystems

m 22 To 21 T

:

objective : design a state feedback to stabilize the origin
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Design method

First, consider x» as a virtual control input for the first equation

> Let us assume a stabilizing control xo = ¢(x1) is known, with ¢(0) =0
that is the origin of
x1 = fi(x1) + g1(x1)é(x1)
is asymptotically stable

> Assume also a Lyapunov function Vi(x1) is known, with

? [fl (X1) + &1 (Xl)(]ﬁ(Xl)} < —W(Xl) W(Xl) is positive definite
X1

> Let rewrite the original first equation as

x1 = f(xa)+a1(xa)o(xa) + g1 (xa) [e—o(x1)]

> And define the change of variable z = xo — ¢(x1)
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1 ——
New formulation of the whole system

{ X1 = fi(x1) + g1(x1)d(x) + g1(x1)z
z = F(x1,x2) + g2(x1, x2)u

with F(x1,x2) = fa(x1,x2) — Z%i [fl(Xl) + g1(xa)o(x1) +g1(X1)Z]

> Appears complicated... but the 1%t equation is AS when z =0

z

- N2
> Consider Lyapunov function candidate V(x1,x) = Vi(x1) + %(xz — ¢(x1))

. oV;
V<-W(x)+z |:87X1g1(xl) + F(x1,x2) +g2(X17X2)U}
1

1 oV, .
> If g #0, choosing u=———— |:—1g1(x1) + F(x1,x2) + kz} yields
g2(x1,x2) | Ox1
V < —W(x) — kz? for some k >0

= it proves that the origin is asymptotically stable
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Example
Consider system
X1 = X12 — x13 + xo

X2 = u

» Infinite number of equilibrium points

> Open loop simulation with u =0 and xo = [1 2]7

2

1.8
—
1.6
8
1.4
1.2, //
|
1
0 1 2 3 4

23/ 26



Chapitre 5 : State Feedback Stabilization

LBeu:knepraing INSA‘

Objective : stabilize the origin with backstepping control TouLoUSE

> Let's start with the first equation, x; = 0 stabilized with virtual control law

x2 = p(x1) & —x% — x

> Proved with Lyapunov function Vi(x1) = %X12 = Vi=-x2-x¢
> Change of variable z = xo + xZ + x1 (= x2 — ¢(x1))
» That transforms the system into

>'<1:—X1—X13+z
z=u+(1+2x)(—x1 — x3 + 2)

> Consider Lyapunov function candidate V(x) = 2x2 + 122 for the overall system

V=-—x2—x{ +z(x1 + (1 +2x1)(—x1 —x3 +2) + u)

v

The origin x = 0 stabilized with control

u=—x—(1+2)(—x1 —x3+2)—z

24 / 26



Chapitre 5 : State Feedback Stabilization

L Backstepping I“SA‘

TOULOUSE

Simulations

Initial condition : xo = H
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More general form

By recursive application of backstepping, one can consider strict-feedback systems of
the form

n = fo(n) + go(n)x
= f(m,xa) + &, x)xe
X2 = fa(n,x1,x2) + g(n, x1, x2)x3
).(k—l = fk—l("],Xlw~~,Xk—1)+gk—1(77’X17-~~,Xk—1)Xk
Xk = fk("hxlaH-’Xk)"’_gk(naxlw'ka)u

where n € R", x; are scalars, f; equal 0 at the origin and g; # 0 in some domain
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