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Problem statement

Consider a system
x = f(x, u)

State feedback stabilization problem

Design a control law u = ¢(x) such that the origin x = 0 is an asymptotically stable
equilibrium point for the closed-loop system

X = f(x, 6(x))

> u= ¢(x) is a static feedback, a memoryless function of x

» Dynamic feedback : u = ¢(x, z), with z a state of a dynamic system z = g(x, z)
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A different equilibrium point may be stabilized : xeq

— It requires the existence of a steady-state control ueq such that

0= f(Xeq7 uEQ)

Apply the change of variable

X5 = X — Xegq and Us = U — Ueq

and we have
X5 = f(Xeq + X5, Ueq + Us) = f5(xs, us)
with f5(0,0) = 0.

> the previous formulation is retrieved
> the control us = ¢(x;5) is to be designed
> then, the overall control is u = ¢(xs) + veq
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Example

Consider a hydraulic system with two tanks.

Dynamical model of liquid levels : ]
hy = 0.01uy — 0.05 sign(hy — h2)~/20[h1 — ha|
ha = 0.05 sign(hy — ha)+/20[hy — ha| — 0.051/20 h,

hy

Desired liquid level hjeq = 0.9m

» At the equilibrium :
ug = 54/20|h1 — ha| Uteq
{ b= 2h = haeq

» Defining x = h — heq and u = uy — u1eq, NEW system :

x1 = 0.01u+ 0.15 — 0.05 sign(xy — x2 + 0.45)1/20|x1 — x2 + 0.45|
X2 = 0.05 sign(x1 — x2 + 0.45)1/20|x3 — x2 + 0.45| — 0.05/20 (x2 + 0.45)

15
0.45

» with the equilibrium point at the origin x =0 and u = 0.
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Linearization

For linear time invariant systems

x = Ax + Bu

State feedback control : u = —Kx

> Resulting closed-loop system

x = (Af BK)X

> Closed-loop system asymptotically stable iff A — BK is Hurwitz

> Several systematic methods to design gain K
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Linearization

As for input free systems, nonlinear systems can be linearized around (x =0, u =0)
(equilibrium point)

x = f(x, u) = x = Ax + Bu

with
of of
A= —(x,u) and B= —(x,u)
Ox x=0,u=0 Ou x=0,u=0
> A linear state feedback u = —Kx can be designed with linear tools.

» The origin is still an equilibrium point for the closed-loop system
x = f(x, —Kx)
» For a small enough x, the origin is locally stabilized.

»> A Lyapunov function may be used to estimate the region of attraction
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We want to stabilize the scalar system

x=x24y  Jnearization o,
easily stabilized by control law u = —kx, k >0

» The origin is still an equilibrium point for the closed-loop system
x = —kx + x?

> For a small enough x, the origin is asymptotically stable.
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» With the Lyapunov function V = %xz, an estimation of the region of attraction

is the set {|x| < k}

> Actually, the region of attraction is the set {x < k}
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Introductory example

Back to the previous scalar system

x=x>+u
> The linear state feedback u = —kx, k > 0, ensures local asymptotic stability
x = —kx +x2 (closed-loop)
> The nonlinear state feedback
u=—kx — x2, k>0,
ensures global stabilization
x = —kx (closed-loop — linearized)

< The control has canceled the nonlinearity
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Feedback linearization

]
Consider nonlinear system of the form (affine in u)

x = f(x)+ g(x)u with £(0) =0, x e R", u e R™

Assume a diffeomorphism T(x) on a set! D, with T(0) = 0, such that the change of

variable transforms the system into

z=Az+ B|¢(x) +v(x)u with v(x) a nonsingular matrix Vx € D
g

The nonlinear state feedback
u=7"2x) (=) +v)
cancels the nonlinearity and converts the system into

z=Az+ Bv

< a linear system with a new control variable v

1. Let D be a domain of R” including the origin
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> The origin z = 0 can be stabilized by (exponentially stable)
v=—Kz
> In x—coordinates, the control becomes
u=7"20)( = (x) - KT(x))

> It can be shown that the x—coordinates dynamic also has the exponential
stability property in the neighborhood of x =0

» Feedback linearization is based on exact mathematical cancellation of nonlinear
terms

— requires a very good knowledge of the model

> Some nonlinear terms may be “good” terms and are helpful for stabilization
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Consider system

S5
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with a > 0

» On D = {|x2| < w/2}, the origin is the unique equilibrium point (0,0) =0

> Open loop simulation with u = 0 (with a =5 and x = [1 0.5])

—1I

—I9
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Design the control law

> Change of variables

_ _ X1 . . .
z=T(x)= L sin(xz)} T(x) being a diffeomorphism on D

> New system
. 0 1 0
z= [0 0}z+ [1} acos(xz)(fforu)

> with control law u = xZ + ﬁv, we have

< gl

< easy to place poles (it’s a control companion form)
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Simulations

In z—coordinates, control law :

Results in the closed-loop system

. o 1
zZ = 71 722

(a=5and xo =[10.5]")
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In x—coordinates, control law :
1
u=x - ——KT(x)
acos x2

Results in the closed-loop system

x= L alsin(fxg(x)}

acos x2
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Consider system

x=ax—b3+u with a, b>0

> First stabilizing state feedback u = —(k + a)x + x3

< closed-loop — x = —kx

> Second stabilizing state feedback u = —(k + a)x

< closed-loop — x = —kx — bx3

> Lyapunov analysis : V = 1x2
\./:x(kafbx3) = —kx® —bx* <0

= global asymptotic stability
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Simulations

—u=—(k+a)z+°

u=—(k+a)

(a=b=1, k=2 and x = 10)
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Backstepping

It is a nonlinear state feedback control design method
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Consider nonlinear system of the form

{ %1 = f(x1) + g1(a)x

%o = fa(x1,x2) + g2(x1, x2)u

Sort of cascade connection of two subsystems

219

-

with x3 ER™ | xp € R, ue R

T2 Zl

objective : design a state feedback to stabilize the origin
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Design method

First, consider xp as a virtual control input for the first equation

> Let us assume a stabilizing control x = ¢(x1) is known, with ¢(0) =0
that is the origin of
x1 = f(xa) + g10a)é(x1)

is asymptotically stable

> Assume also a Lyapunov function Vj(x1) is known, with

%[fl(n) +&1(a)d(xa)] < -W(x)

W(x1) is positive definite
Bxl

> Let rewrite the original first equation as

X1 = f(a)+e1(xa)o(x) + g1xa) [e—o(x1)]

> And define the change of variable z = xo — ¢(x1)

L\
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New formulation of the whole system

{ X = fi(x1) +g1(xa)p(xa) + g1(xa)z

z = F(x1,x2) + g2(x1,x2)u
with F(x1,x2) = fa(x1, x2) — g—i [fl(xl) + g1(x1)é(x1) +g1(x1)z]

> Appears complicated... but the 15t equation is AS when z =0
z

- N
» Consider Lyapunov function candidate V(x1,x2) = Vi(x1) + %(xz - ¢(x1))
. oVh
V<-W(a)+z ™ g1(x1) + F(x1, x2) + g2(x1, x2)u

1

> If go #0, choosing u = ———
&2(x1,x2)

oV; _
{;gl(xl) + F(x1,x) + kz] yields
Ox1

V< —W(x1) — kz? for some k > 0

= it proves that the origin is asymptotically stable
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Example

Consider system

{ i=x2 =3 +x

)'Q:u

> Infinite number of equilibrium points

> Open loop simulation with v =0 and xp = [1 2]7
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Objective : stabilize the origin with backstepping control TouLousE

> Let's start with the first equation, x; = 0 stabilized with virtual control law

xo = p(x1) & —x% —x1

> Proved with Lyapunov function Vi(x;) = x2 = Vi=-x2—x¢

v

Change of variable z = x2 + x2 + x1 (= x2 — ¢(x1))

» That transforms the system into

)'(1:7x17x3+z
z=u+4(142x)(—x1 — x} + 2)

» Consider Lyapunov function candidate V(x) = %xlz + %22 for the overall system

V=—xZ—x{ +z(x1 + (1 +2xqa)(—x1 —x2+2)+ u)

» The origin x = 0 stabilized with control
u=—x1—(14+2x)(—x1 —x} +2)—z
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Simulations

Initial condition : xg = B:|
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More general form

By recursive application of backstepping, one can consider strict-feedback systems of
the form

n = fo(n) + go(n)x
X1 = f(n,x1) + gi(n, x1)x2
Yo = f(n,x1,x2) + g2(n, x1,x2)x3
k-1 = fea(myxa, oo xk—1) + 8k—1(m, X1, - - Xk—1)Xk
X = fulmyxa, -, xk) + gk(n, X1, - - Xk )u

where n € R", x; are scalars, f; equal 0 at the origin and g; # 0 in some domain
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