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Problem statement

Consider a system
ẋ = f (x , u)

State feedback stabilization problem

Design a control law u = φ(x) such that the origin x = 0 is an asymptotically stable
equilibrium point for the closed-loop system

ẋ = f (x , φ(x))

I u = φ(x) is a static feedback, a memoryless function of x

I Dynamic feedback : u = φ(x , z), with z a state of a dynamic system ż = g(x , z)

4 / 26



Chapitre 5 : State Feedback Stabilization

Introduction

A di�erent equilibrium point may be stabilized : xeq

→ It requires the existence of a steady-state control ueq such that

0 = f (xeq , ueq)

Apply the change of variable

xδ = x − xeq and uδ = u − ueq

and we have
ẋδ = f (xeq + xδ, ueq + uδ) , fδ(xδ, uδ)

with fδ(0, 0) = 0.

I the previous formulation is retrieved

I the control uδ = φ(xδ) is to be designed

I then, the overall control is u = φ(xδ) + ueq

5 / 26

Chapitre 5 : State Feedback Stabilization

Introduction

Example

Consider a hydraulic system with two tanks.

Dynamical model of liquid levels : ḣ1 = 0.01u1 − 0.05 sign(h1 − h2)
√

20|h1 − h2|

ḣ2 = 0.05 sign(h1 − h2)
√

20|h1 − h2| − 0.05
√
20 h2

Desired liquid level h1eq = 0.9m

I At the equilibrium :{
u1 = 5

√
20|h1 − h2|

h1 = 2h2
⇒

{
u1eq = 15
h2eq = 0.45

I De�ning x = h − heq and u = u1 − u1eq , new system : ẋ1 = 0.01u + 0.15− 0.05 sign(x1 − x2 + 0.45)
√

20|x1 − x2 + 0.45|

ẋ2 = 0.05 sign(x1 − x2 + 0.45)
√

20|x1 − x2 + 0.45| − 0.05
√

20 (x2 + 0.45)

I with the equilibrium point at the origin x = 0 and u = 0.
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Linearization

For linear time invariant systems

ẋ = Ax + Bu

State feedback control : u = −Kx

I Resulting closed-loop system

ẋ =
(
A− BK

)
x

I Closed-loop system asymptotically stable i� A− BK is Hurwitz

I Several systematic methods to design gain K
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Linearization

As for input free systems, nonlinear systems can be linearized around (x = 0 , u = 0)
(equilibrium point)

ẋ = f (x , u) ≈ ẋ = Ax + Bu

with

A =
∂f

∂x
(x , u)

∣∣∣∣
x=0,u=0

and B =
∂f

∂u
(x , u)

∣∣∣∣
x=0,u=0

I A linear state feedback u = −Kx can be designed with linear tools.

I The origin is still an equilibrium point for the closed-loop system

ẋ = f (x ,−Kx)

I For a small enough x , the origin is locally stabilized.

I A Lyapunov function may be used to estimate the region of attraction
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Example

We want to stabilize the scalar system

ẋ = x2 + u
linearization−−−−−−−→ ẋ = u

easily stabilized by control law u = −kx , k > 0

I The origin is still an equilibrium point for the closed-loop system

ẋ = −kx + x2

I For a small enough x , the origin is asymptotically stable.

I With the Lyapunov function V = 1
2
x2, an estimation of the region of attraction

is the set {|x | < k}

I Actually, the region of attraction is the set {x < k}
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Introductory example

Back to the previous scalar system

ẋ = x2 + u

I The linear state feedback u = −kx , k > 0, ensures local asymptotic stability

ẋ = −kx + x2 (closed-loop)

I The nonlinear state feedback

u = −kx − x2, k > 0,

ensures global stabilization

ẋ = −kx (closed-loop → linearized)

↪→ The control has canceled the nonlinearity
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Feedback linearization

Consider nonlinear system of the form (a�ne in u)

ẋ = f (x) + g(x)u with f (0) = 0, x ∈ Rn, u ∈ Rm

Assume a di�eomorphism T (x) on a set 1 D, with T (0) = 0, such that the change of
variable transforms the system into

ż = Az + B
[
ψ(x) + γ(x)u

]
with γ(x) a nonsingular matrix ∀x ∈ D

The nonlinear state feedback

u = γ−1(x)
(
− ψ(x) + v

)
cancels the nonlinearity and converts the system into

ż = Az + Bv

↪→ a linear system with a new control variable v

1. Let D be a domain of Rn including the origin
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I The origin z = 0 can be stabilized by (exponentially stable)

v = −Kz

I In x−coordinates, the control becomes

u = γ−1(x)
(
− ψ(x)− KT (x)

)
I It can be shown that the x−coordinates dynamic also has the exponential

stability property in the neighborhood of x = 0

I Feedback linearization is based on exact mathematical cancellation of nonlinear
terms

↪→ requires a very good knowledge of the model

I Some nonlinear terms may be �good� terms and are helpful for stabilization
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Feedback linearization

Example 1

Consider system

ẋ =

[
a sin(x2)
−x21

]
+

[
0
1

]
u with a > 0

I On D = {|x2| < π/2}, the origin is the unique equilibrium point f (0, 0) = 0

I Open loop simulation with u = 0 (with a = 5 and x0 = [1 0.5]T )
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Design the control law

I Change of variables

z = T (x) =

[
x1

a sin(x2)

]
T (x) being a di�eomorphism on D

I New system

ż =

[
0 1
0 0

]
z +

[
0
1

]
a cos(x2)

(
− x21 + u

)
I with control law u = x21 + 1

a cos x2
v , we have

ż =

[
0 1
0 0

]
z +

[
0
1

]
v

↪→ easy to place poles (it's a control companion form)
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Simulations

In z−coordinates, control law :

v = −
[
1 2

]︸ ︷︷ ︸
K

z

Results in the closed-loop system

ż =

[
0 1
−1 −2

]
z

In x−coordinates, control law :

u = x21 −
1

a cos x2
KT (x)

Results in the closed-loop system

ẋ =

[
a sin(x2)

− 1
a cos x2

KT (x)

]

(a = 5 and x0 = [1 0.5]T )

16 / 26



Chapitre 5 : State Feedback Stabilization

Feedback linearization

Example 2

Consider system

ẋ = ax − bx3 + u with a, b > 0

I First stabilizing state feedback u = −(k + a)x + x3

↪→ closed-loop → ẋ = −kx

I Second stabilizing state feedback u = −(k + a)x

↪→ closed-loop → ẋ = −kx − bx3

I Lyapunov analysis : V = 1
2
x2

V̇ = x
(
− kx − bx3

)
= −kx2 − bx4 < 0

⇒ global asymptotic stability
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Feedback linearization

Simulations

(a = b = 1, k = 2 and x0 = 10)
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Backstepping

It is a nonlinear state feedback control design method

Consider nonlinear system of the form{
ẋ1 = f1(x1) + g1(x1)x2
ẋ2 = f2(x1, x2) + g2(x1, x2)u

with x1 ∈ Rn1 , x2 ∈ R, u ∈ R

Sort of cascade connection of two subsystems

objective : design a state feedback to stabilize the origin
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Design method

First, consider x2 as a virtual control input for the �rst equation

I Let us assume a stabilizing control x2 = φ(x1) is known, with φ(0) = 0
that is the origin of

ẋ1 = f1(x1) + g1(x1)φ(x1)

is asymptotically stable

I Assume also a Lyapunov function V1(x1) is known, with

∂V1

∂x1

[
f1(x1) + g1(x1)φ(x1)

]
≤ −W (x1) W (x1) is positive de�nite

I Let rewrite the original �rst equation as

ẋ1 = f1(x1)+g1(x1)φ(x1) + g1(x1)
[
x2−φ(x1)

]

I And de�ne the change of variable z = x2 − φ(x1)
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New formulation of the whole system{
ẋ1 = f1(x1) + g1(x1)φ(x1) + g1(x1)z

ż = F (x1, x2) + g2(x1, x2)u

with F (x1, x2) = f2(x1, x2)−
∂φ

∂x1

[
f1(x1) + g1(x1)φ(x1) + g1(x1)z

]
I Appears complicated... but the 1st equation is AS when z = 0

I Consider Lyapunov function candidate V (x1, x2) = V1(x1) +
1
2

( z︷ ︸︸ ︷
x2 − φ(x1)

)2
V̇ ≤ −W (x1) + z

[
∂V1

∂x1
g1(x1) + F (x1, x2) + g2(x1, x2)u

]

I If g2 6= 0, choosing u = −
1

g2(x1, x2)

[
∂V1

∂x1
g1(x1) + F (x1, x2) + kz

]
yields

V̇ ≤ −W (x1)− kz2 for some k > 0

⇒ it proves that the origin is asymptotically stable
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Backstepping

Example

Consider system {
ẋ1 = x21 − x31 + x2

ẋ2 = u

I In�nite number of equilibrium points

I Open loop simulation with u = 0 and x0 = [1 2]T
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Objective : stabilize the origin with backstepping control

I Let's start with the �rst equation, x1 = 0 stabilized with virtual control law

x2 = φ(x1) , −x21 − x1

I Proved with Lyapunov function V1(x1) =
1
2
x21 ⇒ V̇1 = −x21 − x41

I Change of variable z = x2 + x21 + x1 (= x2 − φ(x1))

I That transforms the system into{
ẋ1 = −x1 − x31 + z

ż = u + (1+ 2x1)(−x1 − x31 + z)

I Consider Lyapunov function candidate V (x) = 1
2
x21 + 1

2
z2 for the overall system

V̇ = −x21 − x41 + z
(
x1 + (1+ 2x1)(−x1 − x31 + z) + u

)
I The origin x = 0 stabilized with control

u = −x1 − (1+ 2x1)(−x1 − x31 + z)− z
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Backstepping

Simulations

Initial condition : x0 =

[
1
2

]
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More general form

By recursive application of backstepping, one can consider strict-feedback systems of
the form



η̇ = f0(η) + g0(η)x1

ẋ1 = f1(η, x1) + g1(η, x1)x2

ẋ2 = f2(η, x1, x2) + g2(η, x1, x2)x3
...

ẋk−1 = fk−1(η, x1, . . . , xk−1) + gk−1(η, x1, . . . , xk−1)xk

ẋk = fk (η, x1, . . . , xk ) + gk (η, x1, . . . , xk )u

where η ∈ Rn, xi are scalars, fi equal 0 at the origin and gi 6= 0 in some domain
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