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Experiment 1

Finding paths in a graph : LegoRover

Lego Robot EV3

1.1 The purpose of the experiment

This experiment’s purpose is to control a 2-wheel drive Lego robot
that has a free wheel for balance, whose command is similar to
that of a rover (Figure 1), in order to:

• efficiently follow a black line on the ground to guide its
trajectory (low level continuous control: Level 0)

• correctly choose a path to follow according to a given criterion
and constraints (high level command such as Artificial Intelligence:
Level 2)

• correctly follow the desired path (runtime controller type
command: Level 1)

Figure 1: Curiosity rover

These different levels of control correspond to different fields
in the field of Automation in general, and are illustrated in the
Figure 2.

Chapitre 3. Intégration de la planification dans une architecture embarquée

référence SYSTÈMEcommande

estimation

sortie

observationESTIMATEUR

erreur
CORRECTEUR+

−

Fig. 3.12 – Principe de l’asservissement d’un système en boucle fermée

“Prévoir” qui calcule des données comparables à la référence en fonction des données
de sortie et de données du système et de l’environnement. Le comparateur est remplacé
par une fonction “Comparer” qui distingue s’il existe ou non une différence entre la
référence et la sortie estimée. Une fonction “Corriger” remplace le bloc de correction :
en fonction de la différence entre la référence et la sortie estimée, elle envoie une nouvelle
commande au système.

Les niveaux sont numérotés selon leur niveau dans la hiérarchie :
- niveau 3 : gestion de la mission et de l’environnement ;
- niveau 2 : gestion du plan ;
- niveau 1 : gestion de la trajectoire ;
- niveau 0 : guidage.

Une couche physique incluant capteurs et effecteurs et une couche correspondant à la
base de données sont définis autour de ces niveaux.

☞ Les capteurs sont définis comme les moyens de mesures des variables relatives au dépla-

cement du véhicule, à ses ressources, à la mission et à l’environnement.
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Fig. 3.13 – Organisation hiérarchique des niveaux dans l’architecture, couche physique
et couche de la base de données

Les niveaux communiquent selon le principe de la figure 3.13. Les capteurs ont accès
à la couche physique : ils ont les informations concernant l’état. Le niveau de guidage

88

Figure 2: The different levels of control in an autonomous
architecture

1.2 Model presentation

We are working with a Lego robot mounted on 2 wheels and a
freewheel for balance as shown in the Figure 16.

The sensor used for line tracking is a LineLeader sensor (Figure 4).
It is composed of 8 pairs of photodiodes / phototransistors, which,
after calibration, returns a bit to 1 when the pair is in front of the
color black (Figure 5). A function has been developed to return a
sum weighted according to the position of the sensor in relation to
a black line (see SensorLine function in PilotRobert.java).

The robot is controlled by an ARM9 microprocessor.
The robot moves on a map made up of black lines and identified

points.
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Figure 3: The Lego Robot

1.3 Presentation of the TPTomTom folder

Download the TP TomTom folder from moodle into your directory.
Open the file MiseEnPlace-TPTomTom.pdf, follow the implementation
of the TPTomTom project until the end. The EV3 project corresponds
to the programming files of the Lego Robot. The generated code
will be embedded in the brick of the robot. The PC project
corresponds to the programming files of the PC that will communicate
with the robot.

1.4 EV3 files presentation

The EV3 project contains the following files:

• Pilote.java : main function of the Pilot class, mission
creation, start-up;

• PilotRoberto.java : robot guidance, control;

• MissionRobot.java : processes the missions sent by the PC
and received by the robot;

Figure 4: The LineLeader sensor

Figure 5: Line tracking principle diagram

• CommBTRobot.java : management of the Bluetooth communication
with the PC;

• Message.java : management of the messages sent by the PC
and received by the robot;

1.5 PC files presentation

The PC project contains the following files :

• ShortestPath.java : main class of the PC. Setting up the
board, launching the graphical interface, launching the Dijkstra,
building the mission, launching the mission on the robot;

4
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• test_BasNiveau.java : test program for the guidance section.
3-point test to confirm the orientation;

• Dijkstra.java : code of the Dijkstra algorithm;

• CommBTPC.java : management of the Bluetooth communication
with the Lego robot;

• InterfaceDialogue.java : graphical interface;

• Map.java : map management;

• Message.java : building messages between the PC and the
robot;

• MissionPC.java : mission management; sequencing of the
commands sent to the robot;

• Order.java : class for the commands to be sent to the robot;

• Point.java : point class;

1.6 Implementation of the guiding aspect

First, the objective is to implement the low level command on
the robot, i.e. the guiding around a black line, as shown in the
Figure 6.

Figure 6: Control diagram

I Explain the control diagram. Why are the commands sent
to the two motors different?

I Fill in the file PilotRoberto.java in order to set up the
proportional control loop around a speed reference noted
speed and a central position on the black line, knowing that
the error and the control are of type (float). The value of kp
is fixed and worth 10.

I Test your regulation in real time with the file
test_BasNiveau.java with a constant speed value set at
300°/s.

I Vary the speed between 0 and 500 to determine the acceptable
range of values for the speed.

I Vary Kp between 5 and 40 for example in order to highlight
the characteristics of a proportional regulator.

Once the low level control (Level 0: guidance) has been validated,
we will set up the level 1 control: trajectory management.

1.7 Implementation of the trajectory management
aspect

This part consists in verifying that the trajectory management is
properly carried out on the robot. To do this, we simply check the
correct sequencing of a mission written "by hand".

I Using the file test_BasNiveau.java, create by hand a mission
going from point A to point Q on the map, with a speed
of 360°/s, using commands such as: listOfOrders.add(new
Order(int angle, int distance, int speed)); with the
angles in degrees, the distance in mm and the speed in degrees
per second.

I Verify this mission on the robot.
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1.8 Implementation of the mission plan management
aspect

This part consists of developing a strategy for the development of
a mission plan. To do this, we are led to define a graph whose
vertices are the points that can be reached and whose arcs are the
paths between these points.

I Formalize the optimization problem you are going to try to
solve in order to elaborate a path for the robot by establishing
an optimization criterion, drawing inspiration from the appendix
entitled "Graph Theory - Dijkstra Algorithm".

I Complete the function SetArc in the file Map.java in order
to define the weight of the arcs in the graph according to the
chosen criterion.

I Suggest on paper an intuitive path finding method, for example
a greedy algorithm that would allow to find a path between
a starting point and an end node.

I Open the file Dijkstra.java. Study the code in order to find
the steps of the pseudo-algorithm given in the appendix.

I Fill in the file Dijkstra.java :

– method Trouvmin() which returns the vertex closest
to the initial vertex: complete the search loop for the
minimum value node not yet explored in tab_value.

– method MajCcum(int noeud_retenu) which updates
tab_value and tab_noeuds.

I Test this algorithm using a distance criterion (shortest path).
Note: remember to uncomment line 53 in ShortestPath.java.
(line BuildPath.ComputeDijkstra).

I We are now interested in making the fastest path in terms
of travel time. Edit the SetArc function in the Map.java file
to adapt the algorithm.

I Highlight a change following this criterion change by modifying
the speeds on the map for instance.

1.9 Possible upgrades

This part aims at extending the algorithm to take into account
other criteria or other ways of modeling the problem. For example,

I To suggest a solution allowing the robot to start from an
initial node, to arrive at a end node, passing through particular
nodes specified and not ordered, in an optimal manner (typical
for a letter carrier’s delivery route for example).

I Suggest a solution if the robot’s resources are limited and it
can, for example, only cover a limited distance (limited fuel).

I We can now imagine a rover on Mars, which has to carry
out measurement points of more or less importance, with
a limited amount of resources. Imagine an algorithm that
solves the problem by maximizing the rewards on the measurement
points while ensuring that the resources will be sufficient.
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Experiment 2

Analysis of non-linear systems: Phase Plane Method

Study of a relay position servo control

2.1 The purpose of the experiment

The purpose of this experiment is to study the behavior of a system
controlled by an all-or-nothing controller, with threshold, and/or
hysteresis (Figure 7), by the phase plane method using Matlab.

ε

Δ

+ −

− +

Figure 7: Non-linear element

The main benefit of the on-off controller is its simplicity. A
relay or a simple switch can be used to materialize the device.
The drawback is often premature wear of the components due to
sudden and rapid changes of the command. In order to verify some
of the results given in the part of the course on non-linear servo
systems that deals with this method, we will simulate such a system
with Simulink. The trajectories will be plotted in the phase plane
of the system. The amplitude and period of self-oscillations for
different parameter values (threshold and hysteresis of the relay,
tachometer feedback rate, initial conditions) will also be evaluated
if necessary.

2.2 Course reminders

General information on the Phase Plane method

The phase plane method makes it possible to study systems whose
model is non-linear by using a state space method (as opposed
to the 1st harmonic method which is a frequency method). In
practice, this method is limited to second-order systems. Beyond
that, graphic representation is impossible.

Let a physical system with one degree of freedom governed by
a differential equation of the second order which is written:

ẍ = f(x, ẋ) (1)

if we set: ẋ = y, the equation (1) becomes equivalent to the system:
ẋ = y

ẏ = f(x, y)
(2)

The evolution therefore depends on two parameters, the x
position and the ẋ speed of the system, which can be defined as
the two state variables of the system X = (x1 = x, x2 = ẋ).

• The state of the system is characterized in the plane (x, v =
ẋ), called phase plane, by the point P whose coordinates
are (x1, x2) = (x, ẋ)

• The evolution of the system as a function of time for given
initial conditions is described by the so-called phase trajectory
of the P plane in the phase plane.

• The set of phase trajectories corresponding to the various
initial conditions (x0, ẋ0) in P0 allowed, constitutes the phase
portrait of the system.

7
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Figure 8: Example of phase trajectory

Notion of singular points

Any point where Ẋ = 0 is called a fixed point, critical point
or equilibrium point. A pair (x1, x2) such that Ẋ = 0 is an
equilibrium point, it can be stable or unstable. These points are
singular points for trajectories. For any other point than a singular
point, there is only one phase trajectory that passes through this
point.

Notion of limit cycle

The limit cycles are the trajectories in the phase plane that corres-
pond to the "limit oscillations" of the system, periodic solutions
towards which the trajectories tend for all initial conditions located
in a certain region of the phase plane. Let us recall the essentially
non-linear nature of such phenomena. Figure 8 shows an example
of a stable limit cycle towards which trajectories converge, diverging
from an unstable focus and converging from distant regions of the
phase plane.

In the case of 2nd order controls with discontinuous nonlinearities
(relays, dry friction), the system can be considered as piecewise
linear. The integration of the equation (2) is relatively easy to
do by analytical methods. We obtain, for the different states
of this non-linearity, a non-parametric equation independent of
t of the form f(x, y) = 0 defining several types of elementary
trajectories. The construction of the global trajectory will be made

from these elementary trajectories connected at "switching points"
corresponding to the change of state of the discontinuity. It is thus
shown that in certain cases (relay with hysteresis for example), the
trajectory obtained tends towards a stable limit cycle; it is then
possible to study the stability of such a cycle, and to calculate
its amplitude and period using the Poincaré point transformation
method.

Special properties related to the form ẋ1 = x2.

Direction of phase trajectories: Since x increases in the area
where ẋ > 0 and x decreases in the area associated with ẋ < 0,
the phase trajectories are followed in a clockwise direction.

8
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Intersection of the Ox axis with the phase trajectories:
When the phase trajectory crosses the x-axis, it is either perpendicular
to the Ox axis or it passes through a singular point. Indeed, the
tangent to the phase trajectory can be defined as the line making
an angle α with the Ox axis such that :

tanα =
dv

dx
=

dv
dt
dx
dt

=
f(x, v)

v

because by definition dv
dt = f(x, v). We then have two cases:

• f(x, v) 6= 0 we then have a vertical tangent

• f(x, v) = 0 and we have a singular point ( undetermined
form).

Equilibrium position in the phase plane: The equilibrium
positions are defined by v = ẋ =0 and ẋ = v̇ =0, and are therefore
on the abscissa axis.

Notion of switching lines

The switching of the non-linear element takes place when the ε
input is equal to characteristic values. At this point, the output
value of the relay switches. This corresponds in the state plane
to two shifted parallel lines. For example, in the case of a pure
threshold, the relay switches for values ε = ±∆

2 . The value of
ε can be expressed as a function of the input and output. This
equation defines two switching lines: when the path crosses one of
the lines, the relay switches.

2.3 Experiment

The block diagram of the servo to be studied is given by the figure
9.

τ+
ε+ θ θ

-

k2

Ks

VθVθ
*

Kg
θ

Sr

Vθ

Vr

τ+
ε+ θ

-

k2

VθVθ
*

Kg
θ

Sr

Vθ

Vr

θ

-

-

Figure 9: Block diagram of the servo system

• The physical parameters have been identified

Km = 38.57rad/V.s Ks = 1.57V/rad
Kg = 0.23V.s/rad τ = 0.27s

(3)

• k2 is an adjustable parameter to set the tachometric correction.

• The non-linear element consists of a relay with threshold
and hysteresis whose characteristic Sr = F (ε) is represented
by the figure 7. The output voltage level of the relay that
supplies the motor is ±M = ±10V .

Comment 1 : In order to simplify the phase plane analysis of this
simulated system, angles will be expressed in radians, voltages in
volts and time in seconds; Moreover, the system will be considered
as an autonomous system (input V ∗

θ̇
(t) = 0), disturbed from its

equilibrium position by the initial condition Vθ(0), with trajectories
represented in the plane (Vθ(t), dVθ/dt).
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Study of the system without tachometric correction

Study of the linear system:

I Calculate the expression of the transfer function Vθ(p)/V ∗θ (p)
without taking into account the relay. What are the characteristics
of the closed-loop system (damping, self-pulse, static error,
overshoot, rise time, . . . )? In Simulink, check these data on
the step response of the system with zero initial conditions.

I Give its state representation by setting X1 = Vθ and X2 =
dVθ/dt

Study of the whole system: Add the non-linear element in the
Simulink schematic, configurable with H and ∆.

The differential equations that govern the system are:
dV̇θ
dt = − 1

τ
dVθ
dt + KmKsSr

9τ

dVθ
dt = V̇θ

I What are the equilibrium conditions for this system?

Study of the pure threshold (∆ 6= 0, H = 0)

I We take for example ∆ = 5. What is the condition on the
initial condition Vθ(0) for the system to evolve towards an
equilibrium point? Show it with Simulink.

I What are the characteristics of this system? (static error,
overshoot, frequency. . . )

I Theoretically justify the shape of the curves: asymptotes,
slope, etc.

I The switching lines are the lines on which the non-linear
element switches. What are the equations of the switching
lines in this case? Show them on your graphs.

I Repeat this study by adjusting the value of ∆. What do we
notice about the static error? The overshoot? Is there a link
with the switching lines? Conclude.

Study of the pure hysteresis (∆ = 0, H 6= 0) A similar study is
carried out for pure hysteresis.

I We take for example H =5. Is there a condition on Vθ(0) for
the system to evolve towards an equilibrium point? Show it
with Simulink. Will the system stabilize towards a point of
equilibrium? Justify.

I Theoretically justify the shape of the curves: asymptotes,
slope, etc.

I The switching lines are the lines on which the non-linear
element switches. What are the equations of the switching
lines in this case? Show them on your graphs.

I Repeat this study by adjusting the value of ∆. What do we
notice about the static error? The overshoot? Is there a link
with the switching lines? Conclude.

Study with hysteresis + threshold relay (∆ 6= 0, H 6= 0)

I Do a similar study in this case. In particular, for H = 5,
experimentally find the ∆lim between the oscillating and non-
oscillating mode. In a dual way, for ∆ = 5, find experimentally
Hlim between the oscillating mode and the non-oscillating
mode.

• What are the equations of the switching lines in this case?
Show them on your graphs.

• Conclude.

Comment 2 The choice of the number of iterations and the value
of the calculation step should be a good compromise between the
accuracy of the plot and the execution time.

10
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Influence of the tachometric correction on the transient
state

An internal feedback loop is now implemented on the system (k2

non-zero).

I Update your model accordingly and check that it is working
properly.

I For H = 5, ∆ = 0 (pure hysteresis), find the new switching
line equations. Identify them on your graphs.

I Identify two values of the counter-reaction rate, one corresponding
to a sliding mode and the other to a non-sliding mode.

I Experimentally find the limit feedback rate and that of the
optimal regime (origin reached after a single switching), for
example using dichotomy.

2.4 Réalisation sur site réel

I Pratiquez les résultats obtenus en 2.3 sur le site réel.

I Observez la commande en régime glissant et en régime optimum.

2.5 Bibliographical references

F http://moodle.insa-toulouse.fr/course/view.php?id=66 - Cours
d’ASNL sous Moodle

F C. MIRA : Cours de systèmes asservis non linéaires. DUNOD
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F K . OGATA : Modem control engineering PRENTICE HALL,
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F J.C. GILLES, M. PELEGRIN : Systèmes asservis non linéaires
tomes 1,2 et 3. DUNOD AUTOMATIQUE, 1975

11



CONTROL ENGINEER PRACTICAL WORK 4AE-SE

Experiment 3

Nonlinear systems analysis: 1st harmonic method

Study of a relay position control system

3.1 Experiment presentation

The purpose of the experiment

The purpose is to study a position control in which the amplification
element is a relay (non-linear element). This study focuses on the
experimental finding of the critical location of the relay, based
on the knowledge of the transfer location of the linear section,
and the characteristics of the pumping oscillation (amplitude and
pulsation), measured empirically.

Course reminders : approximation of the first harmonic

When a sinusoidal signal is applied to a non-linear system, a periodic
but non-sinusoidal s(t) output is usually obtained.

Figure 10: Non-linear element

For such a system, one cannot define a transfer function as
one does for a system described by a linear differential equation
with constant coefficients. The output s(t) can be decomposed
into Fourier series. By only considering the 1st harmonic of s(t)
: Wlsin(ωt+ (φ)), we define an equivalent or generalized transfer
function:

module = Wl/Xl argument = φ

This transfer function depends on the pulse ω of the input amplitude
Xl.

Wl/Xl = B(Xl, ω) φ = φ(Xl, ω)

N(Xl, ω) = B(Xl, ω)e(jφ(Xl,ω))

A very important case in practice is the one where N does
not depend on the frequency, and depends only on the amplitude
of the input signal Xl. This is the case of non-linear elements
such as: threshold, saturation, all or nothing, ... In this case,
the generalized transfer function N(Xl) is called the equivalent
complex gain.

Study of the stability of a looped non-linear servo system

Let’s consider the system of the figure 11.

Figure 11: Non-linear loop

The generalized open-loop transfer function of this system is:

s

x
= N(Xl).L(jω)

SupposeXl constant; N(Xl) is then a fixed number (real or complex).
Applying the reversal criterion in the Nyquist plane, we can say
that the control is stable for the amplitude Xl of the error if the

12
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Figure 12: Geometrical criterion for determining a limit cycle

transfer locus N(Xl).L(jω) traversed in the direction of increasing
ω leaves the critical point - I on the left.

We can follow the same reasoning by considering the position
of the locus L(jω) with respect to the point − 1

N(Xl)
.

More generally, for each amplitude Xl of the error, we can
define a critical point − 1

N(Xl)
. All of these points constitute the

critical locus of the non-linear element.
On this critical locus, regions of stability and regions of instability

can be identified (see figure 12).

• For Xl < Xo the system is unstable. The amplitude of the
error will therefore increase and we move on the critical locus
towards X0.

• For Xl > Xo the system is stable, Xl decreases to X0.

• At the limit the system oscillates with an amplitude X0 of
the error, at a pulse ω. This oscillation is called pumping.

τ+
ε+ θ θ

-

k2

Ps

Vθ

Vθ
*

βθ

Sr

k1 RrPe
θ

-

Figure 13: Assembly of the different elements

3.2 Equipment used

The experiment comprises a DC motor studied in 3rd year, and an
adjustable relay.

Comment 3 : We will use a transfer function G(p) for the engine
similar to Km

p(1+τp) with Km = 42.8rad/s.V and τ = 0.214s.

3.3 Experiment

Study of self-oscillations. Plotting of the critical locus

The idea is to experimentally construct the critical locus corresponding
to a relay with certain characteristics, and to compare the results
obtained with the critical locus constructed from the mathematical
formulas studied in class.

Assembly

I Carry out the position controller without the tachymetric
feedback represented by the following block diagram (Fig.
13) for which:

1. Pe, Ps are respectively the conversion gains (physical
data, voltage) of the control and the output. Ps is worth
1.58V/rad;

2. Rr is a 1/9 ratio reducer;

13
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3. k1 is an attenuator potentiometer (10 turns) (0 < k1 <
1 ) that allows to vary the open-loop gain of the linear
section;

4. The tachometric generator placed at the end of the
motor shaft delivers a voltage with a gain β = 0.1V/rad.s−1.

Modus operandi

It is a question of experimentally constructing the critical
locus for the relay with hysteresis H = 1V .

I First of all, we want to check the desired relay characteristic.
We will take the input of the relay from X and the
output of the relay from Y . Set the oscilloscope to XY
mode by pressing Main Delayed>XY, and using the
persistent mode of the oscilloscopeDisplay>∞Persist.
Observe the graph Sr = f(ε) after having set the threshold
(dead band) to zero, then the hysteresisH to the correct
value of 1 V on the simulated relay module. The output
Sr is worth ±7.25V .

I Theoretical study: We choose k1 = 0.5. Draw under
Matlab in the Nyquist plane the transfer locus of the
linear portion k1.L(jω). The intersection of the critical
locus−1/N(Xl) with the linear locus k1.L(jω) gives rise
to a self-oscillation whose amplitude is Xl = X0, and
the pumping pulse is ω. Note these theoretical values.

I To return the oscilloscope to normal mode, do
Main Delayed>Roll. Set k1 to 0.5. Raise the peak-
to-peak voltage (2X0), as well as the frequency for these
self-oscillations. Compare to the theoretical values of
amplitude and pumping pulse.

I By varying the calibrated attenuator, the gain k1 is
varied by k1L(jω)); a new point of intersection with
the critical location is determined, and so on. Compare

the theoretical and experimental values of amplitude
and pumping pulse for the following values of k1: 0.7,
0.6, 0.5, 0.4, 0.3. Comments?

I Based on the actual data obtained and the known process,
plot the critical location of the relay.

I What can we conclude from this?

Improvement of the control performance

Scanning linearization Relay characteristic H = 1V ;
attenuator k1 = 0.5.

I We now take the low frequency generator (GBF) which
we set beforehand to obtain a sinusoidal output with a
frequency of 50 HZ and an amplitude of 0.2V.

I With the system in self-oscillation, add to the error
signal, on another input of the relay, the voltage delivered
by the low frequency generator. Gradually increase the
amplitude. What do you observe?

I Find this result with Matlab.
I Conclusion

Correction by tachometric secondary loop The voltage
delivered by the tachometric dynamo, previously attenuated
by a potentiometer, replaces the previous sinusoidal voltage:
this is called a tachometric feedback.

I For H = 1V ; set k1 = 0.5. What is the amplitude of
self-oscillation?

I Experimentally determine the value of the tachometric
feedback rate allowing to halve the amplitude of self-
oscillations.

I Find this result under Matlab using the critical locus
drawn previously.

14
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Experiment 4

Digital control: dead-beat response & PID control

Computer control of an electric motor

4.1 Purpose of the experiment and presentation of
the process

We have an electric motor, which we would like to control. The
input of the system is a voltage u(t) between +10 and -10V (a
saturator can be added to avoid exceeding the limit values). The
output is the rotation speed ω(t)1.

The motor is modeled as a first order system:

G(p) =
Ω(s)

U(s)
=

Km

1 + τs
.

The purpose of this experiment is:

• to study the influence of the sampling period as well as the
loop gain on the performance of a digital control;

• to implement an exact response;

• to implement a numeric PID control.

Matlab is used for the command. The numerical implementation
of the real-time control is done in Matlab with the toolbox "Simulink
Desktop RealTime" (see help under moodle).

4.2 Theoretical study (preparation)

Digital control with proportional controller

A sample regulation is set up according to the diagram in figure
14.

1The process actually has two outputs ω(t) and ω2(t) which represent
the rotation speed of the motor filtered and unfiltered. We will use the
measurement filtered by a Butterworth filter.

K B (s)0 G(s)

TERégulateur proportionnel
numérique

yc,k uk y(t)

yk

+

-

Figure 14: Discrete looping principle

I Calculate the sampled transfer function of the motor when
a forward discretization is used:

p =
z − 1

Te
.

I Calculate the closed-loop transfer function, for aK proportional
controller, as a function of K, Km, TE and τ .

I Calculate the static error of the sampled regulation as a
function of K, Km, TE and τ .

I By searching for the boundary stability conditions, calculate
the critical stability area:

K = f(TE , τ,Km), (4)

where K represents the gain of the proportional controller
and TE , τ and Km the sampling period, time constant and
system gain respectively.
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Digital control: dead-beat response

R(z) G(z)
yc,k uk yk

+

-

Figure 15: Discrete corrector

We wish to carry out a loop control of a sampled transfer
function process G(z) with a discrete corrector R(z) according to
the diagram of figure 15.

Give the expression of a R(z) corrector to obtain a transfer
function model for the looped system:

Y (z)

Yc(z)
=
kdamp

z(d+1)
(5)

where the d parameter represents the pure process delay.

Control by PID

When using proportional control, you observed a corrected system
with a static error. Now, the goal is to use a digital PID controller
to eliminate this static error.

I What type of digital PID controller (P, PI, PD, or PID)
would meet this specification?

I Provide the block diagram representation of this control system.

I Propose a method for tuning the various parameters.

4.3 Experimental study

Process identification

We have an electric motor that we want to control using the
’Simulink Desktop RealTime’ toolbox from Matlab. Please refer to
the ’Simulink Desktop RealTime Connection Procedure’ in Moodle.
The signal from the sensors corresponds to a voltage ranging from
-10.0 to +10.0 volts. Similarly, the output values that drive the
DACs (Digital-to-Analog Converters) must also fall within this
same range of values. Therefore, a saturator can be added to
prevent exceeding the allowed values.

The motor is modeled by a first order system:

G(p) =
Km

1 + τp
.

The first step is to identify the parameters of the engine by studying
its step response. To do this, under Matlab,

I Create an .xls that will handle the command. Set up a 4V
step input connected to the DAC block.

I Once the relevant parameters have been chosen for identification
(for example, 0.01 can be used as the calculation step), run
the command. Display the motor speed on the oscilloscope
or via Matlab. Press the stop button on the oscilloscope
once the motor has reached its steady state.

I Using this response, identify the motor’s parameters.

Auto-oscillations

I For the values of Km and τ identified on the real system,
plot the graph

K = f(TE , τ,Km), (6)

I For the sampling period T = 0.35s, the gainKm and response
time τ identified, give the value of the gainKlim corresponding
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to the stability limit. Verify this result in simulation with
your "Simulink"application and then experimentally verify
this result.

I For the sampling period T = 0.35s, the gainKm and response
time τ identified, calculate the static error withK = 1, under
"Simulink"and verify it in practice.

Dead-beat response

Apply your theoretical results to the case of the motor speed
control, for d = 0.

I Verify by simulation the expected result and then compare
with experimental measurements.

I Conclude

Implementation of a Digital PID Controller (bonus)

Apply your theoretical results to the case of speed regulation of
the motor.

I Specify the chosen requirements for tuning a controller to
eliminate static error while maintaining acceptable performance.

I Verify the expected result through simulation and compare
it with experimental measurements.

I Draw conclusions.
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Experiment 5

Optimal control: the inverted pendulum

Lego robot EV3

5.1 Purpose of the experiment

The purpose of this experiment is to operate the Lego EV3 robot
to keep it upright on its two wheels ("inverted pendulum" type
experiment). The system is naturally unstable. For that, we will:

• move from a software design to a hardware implementation,
including a simulation verification step. The design chain
will be achieved via Matlab and its toolboxes;

• implement a full state feedback / pole placement control;

• implement an optimal lqr control, and compare different Q
and R values.

5.2 Model presentation

We are using a Lego EV3 robot. It’s a robot with two mobile
wheels. The inputs and outputs of the system are shown in Figure 16.

At each wheel, an angular position sensor gives the angle of
the wheel in degrees. An ultrasonic sensor allows the distance to
an obstacle to be measured with a high degree of accuracy. It
allows the robot to make an avoidance decision. The measured
distances are in centimeters. A gyroscopic sensor measures the
rotation of the robot thanks to a single-axis gyroscope placed on
a quartz resonator. Concretely, this gyroscopic sensor measures
the number of degrees per second as well as the direction of the
rotation.

The robot operations are managed by an ARM9 processor
under a Linux OS.

For a more detailed presentation of the robot and its model,
please refer to the appendix.

Figure 16: Lego EV3 robot

5.3 Presentation of the RobotPendule folder

Copy the RobotPendule EV3 folder from Moodle and the "Guide
pendule Inverse" file to your directory. This file describes the
contents of the archive and allows you to start the experiment.

5.4 Experiment

LQ control

Simulation In a first approach, we want to control the robot
via state feedback. In order to determine the gain of this feedback,
the LQ control principles are used (for more information about
this control see the appendix). To do this, you need to perform
the following tasks for several values of the weighing matrices Q
and R:

I What are the states of the system, describe the state vector.
Since the simulation model distributes the same torque to
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both wheel motors, we will consider only one input. What
does this imply on the state representation? Give the dimension
of Q and R.

I Complete the matlab file lego_selbalance_controller.m. You
just have to define the weighing matrices QQ and RR. This
file must calculate the return state gain called KK here.

I Modify the simulink "Balance ans Drive Control". On this
file, you have several data at your disposal:

– x1_ref state model directive
– theta_ref directive for the angle of inclination of the

wheels
– x1 state model measurement
– theta measurement for the wheel tilt angle
– vol control of the wheel motors.

You must implement the state feedback using the state feedback
gain KK and the different data present (not all of them will
be used there).

I Simulate the robot’s behavior. We will make a comparative
table of the results for different values of QQ and RR
according to the answers received. We will try as much
as possible to classify the answers into different categories
and give the characteristics of each category. Show which
components of QQ and RR are important in the regulation,
on which characteristics?

I What values of QQ and RR do you keep? Justify your
answer.

Test on the actual robot Once you have determined by simulation
an optimal setting for QQ and RR, test your corrector on the
robot using simulink’s "external" mode. Look at the effects of
disturbances, compare the experimental results and the simulation.
Conclude.

Integral action

When a state feedback command is performed, the static error
is not necessarily zero. This is usually not a problem as long as
the objective is a control. However, if the objective is to follow a
trajectory, then one can proceed in the same way as for conventional
servo systems by inserting an integrator in the direct chain as
shown on the figure 19.

Figure 17: Block diagram of a status feedback control with integral
action

In this part, we will include this integrator in the robot control
function.

A brief explanation of the theory is given in appendix B.

I Complete the block diagram of the control to implement the
integral action.

I Define the augmented system and calculate a value of Ki to
reduce the static error using the lqr method.

I Test the robot’s behavior in simulation. Compare with previous
results. Make a comparative table of the results. Find
a value of Ki that seems optimal to you.

I Implement this real time control on the robot. Carry out a
test. Look at the effects of disturbances.
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Pole Placement Control

The LQ control has the advantage and disadvantage of not imposing
the choice of the eigenvalues of the corrected control matrix. This
is an advantage because the designer does not have to think about
the choice of eigenvalues, but it is also a disadvantage because the
system dynamics are not chosen.

In this part we propose to refine the parameters found in the
LQ section in order to try to improve the dynamics.

I Find the eigenvalues imposed by the LQ command of the
first part that seem optimal to you.

I Using Matlab’s place function, find the value ofKf to impose
these system-specific values. A reminder of pole placement
is given in Appendix B.

I Test the robot’s behavior in simulation. Compare with
previous results.

I Vary the imposed eigenvalues to improve the robot’s behavior.
Test the behavior of the robot in simulation. Make a
comparative table of the results, so as to conclude on
the optimal coefficients.

I Implement the best control on the robot. Run a test. Watch
the effects of disturbances.

Pole placement with integral action

In this section, we propose to introduce an integrator into the
control function of the robot while keeping the pole placement
control.

I Use the block diagram of the control to set up the integral
action.

I Define the augmented system and calculate a value of Ki to
reduce the static error with Matlab’s place function.

I Test the robot’s behavior in simulation. Compare with previous
results. Make a comparative table of the results. Find
a value of Ki that seems optimal to you.

I Implement this control on the robot. Run a test. Look at
the effects of disturbances.

5.5 Conclusion

I Summarize the advantages, disadvantages, and performances
of your system according to the corrector used, thanks to the
various established tables.

I Finally, test the robot with different wheels. Conclude.

5.6 Bibliographical references

F Notice NXTway-GS Model-Based Design - Control of self-
balancing two-wheeled robot built with LEGO Mindstorms
NXT, Yorihisa Yamamoto.

F Réalisation, réduction et commande des systèmes linéaires,
A. Rachid, D. Medhi, Technip, Collection Méthodes et techniques
de l’ingénieur (Paris)
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Appendix
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Experiment A

Appendix: Graph Theory - Dijkstra Algorithm

Graph theory is a favoured tool for modelling and solving decision
problems in a very large number of fields ranging from fundamental
sciences (physics, computer sciences) to the most concrete technological
applications (design of telecommunications networks, allocation
problems, GPS and shortest path searches, etc.). The basic concepts
of graph theory are presented in detail in the Graphs course of the
second semester of 4AE. Therefore, only the essential elements
for the implementation of the Dijkstra algorithm for finding the
shortest path between one vertex and all the others in a graph are
introduced here.
A.1 Basic concepts about graphs

Graph, vertices, arcs

A G(X,U) graph consists of

• a set of vertices X = {x1, x2, . . . , xn}

• of a set of arcs connecting these vertices U = {u1, u2, . . . , um}.
An arc u is defined by a pair of vertices: u = (xi, xj)xi ∈
X;xj ∈ X. xi is the origin of the arc u and xj its extremity.

Arc length and valued graphs

It is possible to associate a value lij to each arc (xi, xj). This
value (which can be positive, negative or null) can, for example,

represent a distance, or a speed, or a cost, or any other quantity
representative of the problem modeled by the graph. This is called
a valued graph.

Paths and circuits

A path is a sequence of arcs such that the end of one arc is the
origin of the next arc in that path. For example, (X2 −X1 −X4)
is a path between vertices x1 and x4.

A circuit is a path whose endpoint is also the origin of the path.
So for example, (X2 −X1 −X4 −X2) is a circuit.

The length of a path (or circuit) is equal to the sum of the
lengths of the arcs that make up the path (or circuit).

A.2 Search for shortest paths

A typical problem in a valued graph is to find the shortest path
between one vertex of the graph, which we will note s (source
vertex) and all the others. Graph theory proposes different algorithms
for finding the shortest paths adapted to the properties of the
graph. In the particular case where all the lengths of a valued
graph are positive, the Dijkstra algorithm can be applied.

This algorithm is iterative. We associate 3 pieces of information
to each vertex xi :

• λi: length of the shortest path found at the current iteration
between s and xi.

• qi: last vertex before xi on this path (allows to reconstruct
the shortest path at the end of the algorithm)

• mi ∈ {0, 1}: the vertex xi is said to be "marked" when
mi = 1. It is said "unmarked" when mi = 0. When the
vertex is marked, λi corresponds to the length of the shortest
path between s and xi (λi has its definitive value).
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General principle of the algorithm

• Initializations: λs is initialized to 0 (the shortest path between
s and s is of null length) ; the λi,∀i 6= s are initialized to
∞ (the shortest paths between s and xi are not known at
the beginning of the algorithm: their length is therefore ∞);
these lengths are not definitive ⇒ mi = 0∀i

• At each iteration:

– We locate the vertex not yet marked (mi = 0) which
has the smallest λ.

– We mark this vertex (mi = 1) because, given the graph
properties, we can be sure that there is no shorter path
between s and this vertex.

– We try to update the λ of the immediate following
vertices of the vertex that has just been marked (see
detailed algorithm).

– We start a new iteration until all the vertices are marked
(mi = 1).

Detailed Algorithm

Implementation on an example

Consider the valued graph depicted below. We look for the shortest
paths between s=x1 and the other vertices of the graph.
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The table below details the different iterations of the algorithm.
The grayed boxes show the vertices that are marked at the beginning
of each iteration (unmarked vertex with the smallest λ). The
values updated during the iteration of the λ and m of the vertices
following the marked one appear on the same line.

Reconstruction of the shortest paths :
For example the shortest path between x1 and x6 is of length

6 (λ6 = 6). The last vertex before x6 on this path is x5 (because
q6 = x5). The last vertex before x5 on this path is x4 (because
q5 = x4). The last vertex before x4 on this path is x3 (because
q4 = x3). The last vertex before x3 on this path is x1 (because
q3 = x1). The shortest path is therefore: x1 − x3 − x4 − x5 − x6.

A.3 Bibliographical references

F Notice NXTway-GS Model-Based Design - Control of self-
balancing two-wheeled robot built with LEGO Mindstorms
NXT, Yorihisa Yamamoto.

F Réalisation, réduction et commande des systèmes linéaires,
A. Rachid, D. Medhi, Technip, Collection Méthodes et techniques
de l’ingénieur (Paris)
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Experiment B

Appendix: State feedback control

B.1 Introduction and working principles

State feedback control is a control technique that consists of multiplying
the error between the reference value xref (t) and the measured
state value x(t) by a feedback gain K and using this value as
a command. In fact, state feedback control can be seen as a
generalization of the Proportional Derivative (PD) control in classical
control theory. The figure ?? shows the block diagram of a state
feedback control.

K BuAxx 
refx + x

K BuAxx 

‐

Figure 18: Block diagram of the state feedback control system

The control and the state equation of this system are as follows:

u(t) = −K(x(t)− xref (t)), (7)
ẋ(t) = (A−BK)x(t) +BKxref (t). (8)

It is then possible to stabilize the system by choosing the
feedback gain K in order to correctly place the eigenvalues of
A−BK.

To use a state feedback control, the system must be controllable.
A necessary and sufficient condition for the controllability of the
system is that the controllability matrix Mc is of full rank.

rang(Mc) = n, (9)
Mc = [B,AB, . . . An−1B], (10)

with n the dimension of the system. The Matlab "control" toolbox
allows to evaluate the controllability matrix.

Example: Is the following system controllable?
A = [0, 1;−2,−3], B = [0; 1]→ controllable.

> A = [0, 1; -2, -3]; B = [0; 1];
> Mc = ctrb(A,B);
> rank(Mc)
ans = 2

B.2 Obtaining the K-matrix

Many methods exist to find theK gain.However, the pole placement
and the linear quadratic control) are two methods widely used by
engineers to find the K state return gain.

Direct Pole Placement

This method consists in calculating the feedback gain K so as
to place the poles (the eigenvalues) of the A − BK matrix at a
precise value. The chosen values are obviously stable, and are
often derived from the desired performance on the corrected system
(speed, damping, decoupling...). However, care must be taken
to ensure that the value of K is not aberrant (numerically well
conditioned, limiting saturation...). This method requires solving
a linear system.

The Matlab function place allows to perform a direct pole
placement which minimizes the sensitivity.

Example: Calculate the state feedback gain for the system
A = [0, 1;−2,−3], B = [0; 1] so as to place the poles at −5 and −6.
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> A = [0, 1; -2, -3]; B = [0; 1];
> poles = [-5, -6];
> K = place(A,B, poles)
K =
28.0000 8.0000

Optimal Linear Quadratic (LQ) control

The pole placement command aims to synthesize K, a static state
feedback corrector (eg. such as u(t) = Kx(t)) in such a way that
the poles of the closed loop are placed at the desired locations in
the left complex half-plane.

The general idea: The principle of the Linear Quadratic (LQ)
control, often - and wrongly - called "optimal control", is to synthesize
K, a static state feedback corrector (e.g. such as u(t) = K(x(t)−
xref (t)), which minimizes a quadratic criterion.

In the case of sampled systems, this quadratic criterion is none
other than a weighted (finite or infinite) sum of x(t), the state of
the system, and u(t), the command applied to it. In the case of
continuous systems, this sum is an integral.

While pole placement can be seen as complex for a user (requiring
to choose the poles), the linear-quadratic control is based on an
energy criterion, much more meaningful for the engineer. It should
be noted that the LQ control has, intrinsically, very good robustness
properties.

Mathematical formulation (continuous case, infinite horizon):
Let the Linear Time Invariant (LTI) system with nu inputs and ny
outputs defined by its transfer function H(s) ∈ Cny×nu , complex
and analytical on C+, with an implementation,

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t). (11)

The objective of the LQ method is to calculate the feedback
gain K so as to minimize the following cost function J :

J =

∫ ∞
0

(
(x(t)− xref (t))>Q(x(t)− xref (t)) + u(t)>Ru(t)

)
dt

(12)
under the constraint of system dynamics (11). Note that the
J criterion represents the trade-off between the system energy,
x(t)TQx(t), and the command energy, u(t)TRu(t).

It can be shown (see course in the second semester) that the
solution to this problem is given by the command

u(t) = −K(x(t)− xref (t)), (13)

with
K = R−1BTP, (14)

where P > 0 (i.e. defined positive), is the solution of the Algebraic
Riccati equation,

ATP + PA− PBR−1BTP +Q = 0. (15)

Note that the partial cost is J(x(t), t) = 1
2x(t)TPx(t).

The parameters of choice are the weights of the symmetric
matrices for the state Q = QT , the command R = RT . The
matrices are most often chosen as diagonal. A solution generally
chosen to already have an indication of the orders of magnitude
of these coefficients is to set R = Inu and Q = ρIn, then to
vary the scalar ρ (a ρ � 1 indicates that we will concentrate on
minimizing the energy of the system, then ρ� 1 indicates that we
will concentrate on minimizing the command). We then proceed
by trial-and-error. The function lqr of Matlab allows to obtain
the feedback gain with the LQ method.

Example: Calculate the state feedback gain for the system
A = [0, 1;−2,−3], B = [0; 1] using Q = [100, 0; 0, 1] and R = 1.
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> A = [0, 1; -2, -3]; B = [0; 1];
> Q = [100, 0; 0,1]; R = 1;
> K = lqr(A,B,Q, R)
K =
8.1980 2.1377

ou

> A = [0, 1; -2, -3]; B = [0; 1];
> Q = [100, 0; 0,1]; R = 1;
> [P,L,G] = care(A,B,Q,R); % Résolution de l’EAR
> K=R\1*B’*P;
K =
8.1980 2.1377

About robustness: If we consider a single-input single-output
system, looped by a u(t) = Kx(t) command, whereK is synthesized
by infinite horizon LQ approach, with R = ρI. Therefore, noting
the loop transfer L(s)

L(s) = K(sIn −A)−1B, (16)

and the transfer F (s) (used for sensitivity and robustness analysis)
and the sensitivity function S(s) by

F (s) = I + L(s) = S(s)−1, (17)

it can be proven that

F (−s)TF (s) ≥ 1
⇔ |F (jω)| ≥ 1
⇔ |1 + L(jω)| ≥ 1
⇔ |S(jω)| ≤ 1.

(18)

Therefore, if the sensitivity function |S(jω)| ≤1, then

• system module margin ≥1,

• the gain margin is ∞,

• phase margin ≥ 60deg.

State feedback control with integral action

When a state feedback command is performed, the static error
is not necessarily zero. This is usually not a problem as long
as the objective is control. Nevertheless, if the objective is to
follow a trajectory, one can then proceed in the same way as
for conventional servo systems by inserting an integrator in the
direct chain, applying it to certain y(t) outputs. So we consider a
command of the form2 ( beware, here we have substituted x(t) −
xref (t) by xref (t)− x(t)):

u(t) = −Kf (xref (t)− x(t)) +Ki

∫ t

0
(yref (t)− y(t))dt (19)

applied to the dynamic system:

ẋ(t) = Ax(t) +Bu(t) (20)
y(t) = Cx(t) (21)

If one introduces a new variable z(t) such as ż = yref (t)−y(t),
i.e. ż = Cxref − Cx(t). The command has an expression of the
form

u(t) = −
[
Kf Ki

] [ x(t)
z(t)

]
+
[
Kf Ki

] [ xref
0

]
(22)

and it can be considered as the state feedback control of the augmented

system with X =

[
x(t)
z(t)

]
[
ẋ(t)
ż(t)

]
=

[
A 0
−C 0

] [
x(t)
z(t)

]
+

[
B
0

]
u+

[
0
C

]
xref (23)

When we consider the stabilized system, we have y∞ = yref .
The block diagram of such a command is shown in Figure 19.

2The books on command theory usually describe this command with
xref = 0. We will keep here the expression of xref to improve the tracking
performance.
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Figure 19: Block diagram of a state feedback control with integral
action
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