Worksheet 3 - Statistics for homogeneous Poisson process

Exercise 1. Unbiased estimation for a fixed number of observations.

In this exercice, we assume that n is fixed, and we observe a homogeneous Poisson process with rate $\lambda > 0$, up to the nth event. Denote $0 < T_1 < T_2 < \ldots < T_n$ the corresponding arrival times.

We estimate the unknown parameter λ by the maximum likelihood estimator (MLE) $\hat{\lambda}_n = n/T_n$.

- 1. Prove that the MLE is a biased estimator of the rate λ .
- 2. Consider $\tilde{\lambda}_n = (n-1)/T_n$.
 - (a) Check that $\tilde{\lambda}_n$ is an unbiased estimator of λ .
 - (b) Is it efficient?

Exercise 2. Quality control.

A manufacturing plant wants to check the quality of its production. To do so, the person in charge keeps count of the number of defective parts.

He thus denotes N_t the number of defective parts manufactured by time t (for any t in hours) and assumes $(N_t)_{t \in \mathbb{R}_+}$ is a Poisson process with unknown intensity $\lambda > 0$. He believes that the quality of the production is not acceptable if the average number of defective parts per hour is greater than or equal to 5.

- 1. (a) Do you agree with the Poisson process assumption?
 - (b) We aim at testing

$$\mathcal{H}_0: \lambda \geq \lambda_0$$
 against $\mathcal{H}_1: \lambda < \lambda_0$.

Explicit the value of λ_0 and justify the choice of these testing hypotheses.

- 2. The person in charge fixes the inspection time to one day and observes $(N_t)_{t\in[0,24]}$. By the end of the day, he counts 108 defective parts.
 - (a) Determine an estimation of the rate λ .
 - (b) According to you, is the production quality satisfactory?
- 3. Now, the person in charge decides to observe up to the hundredth flaw and notices that it appears after 22 hours and 15 minutes of production.
 - (a) What is an estimation of λ in this case?
 - (b) First, we may consider that 100 points is large enough to work with the asymptotic distribution. Given this new observation, is the production quality satisfactory?
 - (c) Second, we do not consider the asymptotic distribution anymore. What is your conclusion in this case?

Let us recall the quantiles of the standard gaussian distribution $\mathcal{N}(0,1)$ and the η -quantiles $x_{d,\eta}$ of the $\chi^2(d)$ distribution.

If
$$Z \sim \mathcal{N}(0,1), \; \left\{ \begin{array}{l} \mathbb{P}\left(Z > 1.645\right) = 0.95 \\ \mathbb{P}\left(Z > 1.96\right) = 0.975 \end{array} \right.$$
 and

$x_{d,\eta}$	$\eta = 0.05$	$\eta = 0.95$
d = 50	34.764	67.505
d = 100	77.929	124.342
d = 200	168.279	233.994