Global sensitivity analysis

O. Roustant, INSA Toulouse

Outline

- Motivation
- The Morris method
- The Sobol-Hoeffding (ANOVA) decomposition
- Ressources

MOTIVATION

What we expect from sensitivity analysis

$$y = f(x_1, ..., x_d)$$

Questions :

- Which variables x_i are the most influential on y?
- Which one(s) have no influence ?
- Are there interactions ?
- Can we quantify the effects ?
 - x_i alone,
 - x_i with others

Local sensitivity analysis

Computation of finite differences:

$$[f(x_1, ..., x_{i-1}, x_{i0}+h, ..., x_d) - f(x_1, ..., x_{i-1}, x_{i0}, ..., x_d)] / h$$

- Limitations:
 - Gives a good idea of the effect of x_i ... at the neighborhood of x_{i0}
 - Restricted to main effects

5

OAT

(The method)

OAT design (One-At-a-Time)

- Choose a nominal value X₀
- Move one coordinate at-a-time, and compute a finite difference:

$$\Delta_i(X_0, h) = [f(X_0 + h E_i) - f(X_0)] / h$$

OAT

(The drawbacks)

- Strengths (?)
 - Easy to run
 - Cheap (d+1 function evaluations)
- Drawbacks (many!)
 - Correct interpretation only for a 1st order polynomial!
 - This is a pure local sensitivity analysis
 - High dependence to the nominal point
 - Poor exploration of the space
 - ▶ Included in the unit sphere $x_1^2 + ... + x_{d^2} = 1$!!!

- Idea (From local to global)
 - Do several OAT with different initial points & random paths

Description

- Choose a number of repetitions r
- Simulate a starting point X₀*, and a permutation s*
- Compute the finite differences successively:

$$\begin{split} & \Delta_{s^*(1)}(h) = [\ f(X_0^* + h \ E_{s^*(1)}) - f(X_0^*) \] \ / \ h \\ & \Delta_{s^*(2)}(h) = [\ f(X_0^* + h \ E_{s^*(1)} + h \ E_{s^*(2)}) - f(X_0^* + h \ E_{s^*(1)}) \] \ / \ h \\ & \dots \end{split}$$

- Path visualization for d=2 and d=3
 - See [Badea and Bolagno, 2008], page 18

Figure 4.3.1.1.- Example of Morris' OAT designs in 2 (left) and 3 (right) dimensions

Outputs:

- $\blacktriangleright \mu_i^*$: The average of the r <u>absolute</u> values $|\Delta_i(h)|$
- $\triangleright \sigma_i$: The standard deviation of the r values $\Delta_i(h)$

Interpretation:

- If μ_i^* is large, then X_i is influent
- If X_i has no interaction with other variables AND IF the output is linear / X_i , then $\sigma_i = 0$

Illustration with the toy function defined over [-0.5, 0.5]³:

$$f(x_1, x_2, x_3) = x_1 - 2x_2 + b_{12}x_1x_2 + b_{11}x_1^2$$

Illustration with the toy function defined over [-0.5, 0.5]³:

$$f(x_1, x_2, x_3) = x_1 - 2x_2 + b_{12}x_1x_2 + b_{11}x_1^2$$

$$b_{12} = 10$$

 $b_{11} = 0$

13

Question (with the same function)

Question: What do you obtain, still over [-0.5, 0.5]² with

$$f(x_1, x_2) = |x_1|$$

??

Conclusions

(Please...) NEVER USE OAT!

- The MORRIS method is a much better alternative:
 - Has the same advantages of OAT
 - Easy to run, easy to interpret
 - Low cost: r*(d+1) function evaluations
 - The drawbacks of OAT are avoided
 - No dependence to the starting point
 - Interactions & Non-linearities are accepted
 - Domain exploration

The Sobol-Hoeffding decomposition

Sobol-Hoeffding decomposition

(Efron and Stein, 1981, Hoeffding 1948, Sobol 1993)

Assume that $X_1, ..., X_d$ are independent random variables. Let f be a function defined on D in R^d . Then f is uniquely decomposed as:

$$f(\mathbf{X}) = \mu_0 + \sum_{i=1}^d \mu_i(X_i) + \sum_{i < j} \mu_{ij}(X_i, X_j) + \dots + \mu_{1, \dots, d}(X_1, \dots, X_d)$$

with centering conditions: $\mathrm{E}(\mu_I(X_I)) = 0, \quad I \subseteq \{1, \ldots, d\}$ and non-simplification conditions, implying orthogonality:

$$E(\mu_{ii'}(X_iX_{i'}) \mid X_i) = E(\mu_{ii'i''}(X_iX_{i'}X_{i''}) \mid X_iX_{i'}) = \cdots = 0.$$

Sobol-Hoeffding decomposition (main effects, interactions)

- The terms are obtained recursively:
 - Mean, Main effects

$$\mu_0 = E(f(X))$$
 $\mu_i(X_i) = E(f(X)|X_i) - \mu_0$

2nd order interactions

$$\mu_{ij}(X_i, X_j) = E(f(X)|X_i, X_j) - \mu_i(X_i) - \mu_j(X_j) - \mu_0$$

And more generally:

$$\mu_I(X_I) = E(f(X)|X_I) - \sum_{I' \subseteq I} \mu_{I'}(X_{I'})$$

An example

Example. Ishigami function, with uniform measure on $[-\pi,\pi]^3$. With a=1/2, b= $\pi^4/5$, we have:

$$f(\mathbf{x}) = \sin(x_1) + 7\sin^2(x_2) + 0.1(x_3)^4\sin(x_1)$$

=
$$7a + \sin(x_1)(1+0.1b) + 7(\sin^2(x_2)-a) + 0.1[(x_3)^4-b]\sin(x_1)$$

An example

Estimation of the main effects:

- ► Simulate a sample of size N for $X=(X_1, X_2, X_3)$ and compute z=f(X)
- Estimate the global mean μ_0 by the mean of z
- Estimate the conditional expectation $E(f(X) \mid X_i) \mu_0$
 - ☐ Use a smoother: Local polynomials, smoothing splines, etc.

ANOVA (Sobol indices)

The name "ANOVA" (ANalysis Of VAriance) comes from the relation on variances implied by orthogonality:

$$D = \text{var}(f(\mathbf{X})) = \text{var}(\mu_0) + \sum_{i=1}^d \text{var}(\mu_i(X_i)) + \sum_{i < j} \text{var}(\mu_{ij}(X_i, X_j)) + \cdots + \text{var}(\mu_{1,...,d}(X_1, ..., X_d))$$

(unnormalized) Sobol indices:

$$D_I = \operatorname{var}(\mu_I(X_I))$$

FANOVA decomposition

(Total indices)

The total index of one variable X_i implies all the subsets J containing {i}

$$D_i^T = \sum_{J\supseteq \{i\}} D_J$$

Extension for a group of variables X₁: implies all the subsets J that contain at least one element in I

$$D_I^T = \sum_{\substack{J \ J \cap I
eq \emptyset}} D_J$$

Take again our toy 3D function

• $f(x_1, x_2, x_3) = x_1 - 2x_2 + b_{12}x_1x_2 + b_{11}x_1^2$ with x_1, x_2, x_3 i.i.d. from U([-0.5, 0.5])

• $f(x_1, x_2, x_3) = x_1 - 2x_2 + b_{12}x_1x_2 + b_{11}x_1^2$ with x_1, x_2, x_3 i.i.d. from U([-0.5, 0.5])

• $f(x_1, x_2, x_3) = x_1 - 2x_2 + b_{12}x_1x_2 + b_{11}x_1^2$ with x_1, x_2, x_3 i.i.d. from U([-0.5, 0.5])

Question

Same function, with the same assumptions

??

$$b_{12} = 0$$

 $b_{11} = 3$

Total indices and screening

- If $D_i^T=0$, the variable X_i is removed (no terms containing X_i)
 - Remark: A condition is required on the probability measure

$$g(X_1, \dots, X_d) = \prod_{k=1}^d \frac{|4X_k - 2| + a_k}{1 + a_k}$$

a = (0, 1, 4.5, 9, 99, 99, 99, 99)

[package sensitivity]

Total indices of the g-Sobol function:

 X_5 , X_6 , X_7 , X_8 can be removed

Sobol-Hoeffding decomposition (History and aliases)

- Pioneering work of [Hoeffding, 1948]
- Presented as above by [Efron and Stein, 1981]
- Reintroduced by [Sobol, 1993], in the context of sensitivity analysis, who defined the Sobol indices
 - First alias: Sobol (-Hoeffding) decomposition
- The total effects were introduced by [Homma and Saltelli, 1996]
- ▶ In the book of [Saltelli, Chan, Scott, 2000]:
 - Second alias: HDMR decomposition (High Dimensional Model Representation)

RESSOURCES

Books of review articles

- Badea A. et Bolado R., Review of sensitivity analysis methods and experience. PAMINA 6th FPEC Project, European Commission, 2008.
 - http://www.ip-pamina.eu/downloads/pamina.m2.1.d.4.pdf
- looss B. (2011), Revue sur l'analyse de sensibilité globale de modèles numériques, Journal de la Société Française de Statistique, 152 (1), 1-23, http://www.sfds.asso.fr/journal
- Saltelli A., Chan K. et Scott E.M., editeurs (2000), Sensitivity analysis. Wiley Series in Probability and Statistics.

More specific articles

- B. Efron, C. Stein (1981), The jackknife estimate of variance, The Annals of Statistics, 9, 586-596.
- Hoeffding, W. (1948). A class of statistics with asymptotically normal distributions. Annals of Mathematical Statistics, 19, 293-325.
- Kuo F.Y., Sloan I.H., Wasilkowski G.W., Wozniakowski H. (2010), On de-compositions of multivariate functions, *Mathematics of computation*, **79** (270), 953-966.
- Morris M. (1991), Factorial sampling plans for preliminary computational experiments. *Technometrics*, 33, p. 161-174.
- I. Sobol (1993), Sensitivity estimates for non linear mathematical models, Mathematical Modelling and Computational Experiments, 1, 407–414.

Software

Pujol G., Iooss B. et Janon A. (2013), sensitivity: Sensitivity Analysis. R package version 1.7

http://CRAN.R-project.org/package=sensitivity