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 y = f(x1, ..., xd)

 Questions :
 Which variables xi are the most influential on y ?
 Which one(s) have no influence ?
 Are there interactions ?
 Can we quantify the effects ? 

 xi alone, 
 xi with others

What we expect from sensitivity 
analysis



Local sensitivity analysis

5

 Computation of finite differences: 
[f(x1, ..., xi-1, xi0+h, ..., xd) - f(x1, ..., xi-1, xi0, ..., xd)] / h

 Limitations: 
 Gives a good idea of the effect of xi ...

...at the neighborhood of xi0

 Restricted to main effects



The Morris Method
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 OAT design (One-At-a-Time)
 Choose a nominal value X0

 Move one coordinate at-a-time, and compute a finite 
difference: 
Δi(X0, h) = [ f(X0 + h Ei) – f(X0) ] / h

OAT
(The method)
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OAT
(The drawbacks)
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 Strengths (?)
 Easy to run
 Cheap (d+1 function evaluations)

 Drawbacks (many!)
 Correct interpretation only for a 1st order polynomial!
 This is a pure local sensitivity analysis

 High dependence to the nominal point
 Poor exploration of the space

 Included in the unit sphere  x12 + ... + xd2 = 1 !!!



The Morris method

 Idea (From local to global)
 Do several OAT with different initial points & random paths

 Description
 Choose a number of repetitions r
 Simulate a starting point X0*, and a permutation s*
 Compute the finite differences successively:

Δs*(1)(h) = [ f(X0* + h Es*(1)) – f(X0*) ] / h

Δs*(2)(h) = [ f(X0* + h Es*(1) + h Es*(2)) – f(X0* + h Es*(1)) ] / h

...
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The Morris method
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 Path visualization for d=2 and d=3
 See [Badea and Bolagno, 2008], page 18



The Morris method
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 Outputs: 
 μi* : The average of the r absolute values  |Δi(h)|
 σi  : The standard deviation of the r values Δi(h)

 Interpretation:
 If μi* is large, then Xi  is influent
 If Xi has no interaction with other variables 

AND IF the output is linear / Xi, then σi = 0    



The Morris method
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 Illustration with the toy function defined over [-
0.5, 0.5]3 :

f(x1, x2, x3) = x1 - 2x2 + b12x1x2 + b11x12

b12 = 0
b11 = 0



The Morris method
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 Illustration with the toy function defined over [-
0.5, 0.5]3 :

f(x1, x2, x3) = x1 - 2x2 + b12x1x2 + b11x12

b12 = 10
b11 = 0



The Morris method
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 Question (with the same function) 

b12 = ??
b11 = ??



The Morris method
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 Question: What do you obtain, still over [-0.5, 
0.5]2 with

f(x1, x2) = |x1|

??



Conclusions
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 (Please...) NEVER USE OAT !

 The MORRIS method is a much better 
alternative:
 Has the same advantages of OAT

 Easy to run, easy to interpret
 Low cost: r*(d+1) function evaluations

 The drawbacks of OAT are avoided
 No dependence to the starting point
 Interactions & Non-linearities are accepted
 Domain exploration



The Sobol-Hoeffding decomposition
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with centering conditions:
and non-simplification conditions, implying orthogonality:

Sobol-Hoeffding decomposition 
(Efron and Stein, 1981, Hoeffding 1948, Sobol 1993)
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 Assume that X1, …, Xd are independent random variables. 
Let f be a function defined on D in Rd .  Then f is uniquely 
decomposed as:



 The terms are obtained recursively:

 Mean, Main effects

 2nd order interactions

 And more generally:

Sobol-Hoeffding decomposition 
(main effects, interactions)

19



An example

Example. Ishigami function, with uniform measure on [-π,π]3. 
With a=1/2, b=π4/5, we have:

f(x) = sin(x1) + 7sin2(x2) + 0.1(x3)4sin(x1)

         = 7a + sin(x1)(1+0.1b) + 7(sin2(x2)-a) + 0.1[(x3)4-b]sin(x1)  
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μ0 μ1(xx1)

(main effect)

μ2(xx2)

(main effect)

μ1,3(xx1,x3)

(2nd order 
interaction)



An example
 Estimation of the main effects:

 Simulate a sample of size N for X=(X1, X2, X3) and compute z=f(X)
 Estimate the global mean μ0 by the mean of z
 Estimate the conditional expectation E(f(X) | Xi) - μ0 

 Use a smoother: Local polynomials, smoothing splines, etc.



ANOVA 
(Sobol indices)
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 The name “ANOVA” (ANalysis Of  VAriance) comes from 
the relation on variances implied by orthogonality:

 (unnormalized) Sobol indices: 



FANOVA decomposition 
(Total indices)
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 The total index of one variable Xi implies all the subsets J 
containing {i}

 Extension for a group of variables XI: implies all the 
subsets J that contain at least one element in I



Take again our toy 3D function
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 f(x1, x2, x3) = x1 - 2x2 + b12x1x2 + b11x12

with x1, x2, x3 i.i.d. from U([-0.5, 0.5])

b12 = 0
b11 = 0
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 f(x1, x2, x3) = x1 - 2x2 + b12x1x2 + b11x12

with x1, x2, x3 i.i.d. from U([-0.5, 0.5])

b12 = 10
b11 = 0
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 f(x1, x2, x3) = x1 - 2x2 + b12x1x2 + b11x12

with x1, x2, x3 i.i.d. from U([-0.5, 0.5])

b12 = 2
b11 = 0
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 Same function, with the same assumptions

b12 = 0
b11 = 3

Question

??



Total indices and screening
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 If DiT=0, the variable Xi is removed (no terms containing Xi)
 Remark: A condition is required on the probability measure

a = (x0, 1, 4.5, 9, 99, 99, 99, 99)

[package
 sensitivity]

Total indices of 
the g-Sobol 
function:

X5, X6, X7, X8

can be removed  



Sobol-Hoeffding decomposition 
(History and aliases)

 Pioneering work of [Hoeffding, 1948]
 Presented as above by [Efron and Stein, 1981]
 Reintroduced by [Sobol, 1993], in the context of 

sensitivity analysis, who defined the Sobol indices
 First alias: Sobol (-Hoeffding) decomposition

 The total effects were introduced by [Homma and 
Saltelli, 1996]

 In the book of [Saltelli, Chan, Scott, 2000]:
 Second alias: HDMR decomposition (High Dimensional 

Model Representation)
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Software
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