

CAVIA

Fast Context Adaptation via Meta-Learning

Luisa Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson

Problem Setting: Few-Shot Learning

Given distributions over tasks: $p_{\mathrm{train}}(\mathcal{T})$, $p_{\mathrm{test}}(\mathcal{T})$

- Meta-learn how to adapt fast to any tasks from $p_{
 m train}$
- Evaluate generalisation ability on tasks from p_{test}

Background: MAML (Finn et al., 2017)

Idea: Learn network initialisation s.t. at test time, only few gradient steps are necessary to perform well.

<u>Inner loop</u>:

- Sample batch of tasks, $\mathcal{T}_i \sim p_{ ext{train}}$
- For each task: Get train/test data: $\mathcal{D}_i^{\mathrm{train}}$, $\mathcal{D}_i^{\mathrm{test}}$

- Adapt model: $\theta_i = \theta - \alpha \nabla_{\theta}$ \sum $\mathcal{L}_{\mathcal{T}_i}(f_{\theta}(x), y)$

Outer loop: - Update initial parameters for good test performance by backpropagating through inner loop update

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{i} \sum_{(x,y) \in \mathcal{D}_{i}^{\text{test}}} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}}(x), y)$$

CAVIA

Many tasks & benchmarks don't require generalisation beyond task identification. In this case, we shouldn't update all parameters!

Hence we separate the network into task-specific parameters ϕ , and shared parameters θ , trained similarly to MAML as follows.

Inner loop update:

For each task i, update context parameters:

$$\phi_i = \phi_0 - \alpha \nabla_{\phi_0} \sum_{(x,y) \in \mathcal{D}_i^{\text{train}}} \mathcal{L}_{\mathcal{T}_i}(f_{\{\phi_0,\theta\}}(x), y)$$

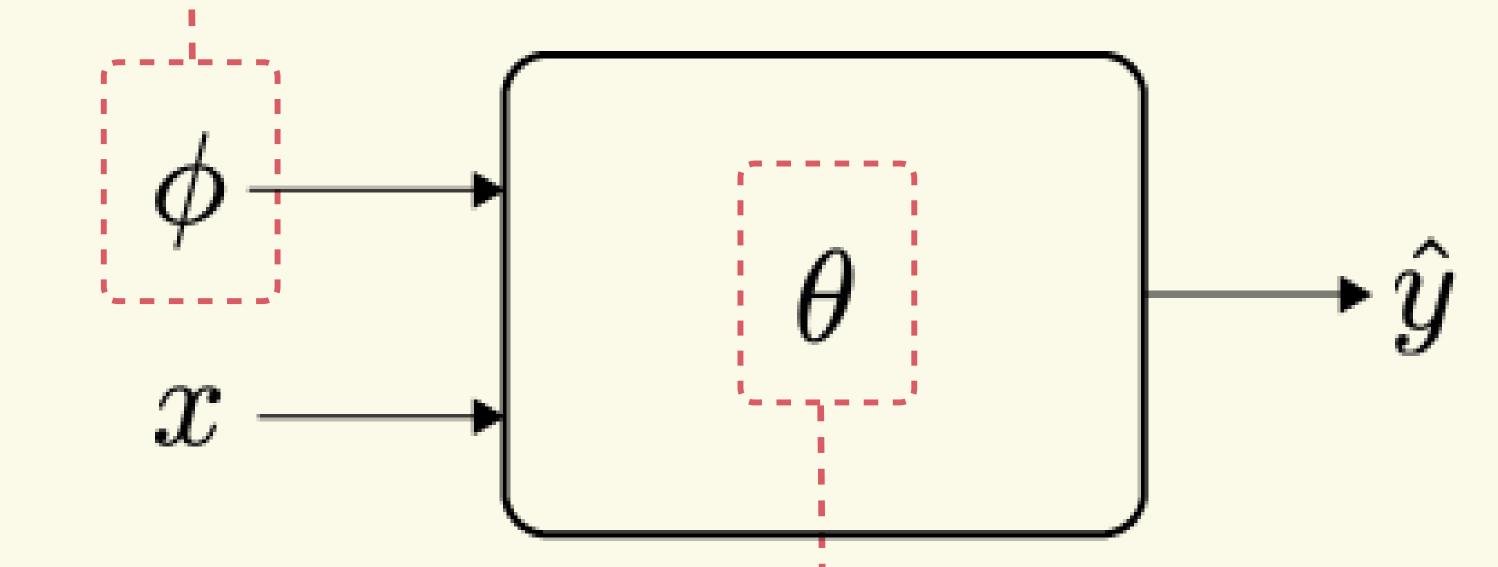
Outer loop update:

Update shared parameters θ using test loss from individual tasks

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{i} \sum_{(x,y) \in \mathcal{D}_{i}^{\text{test}}} \mathcal{L}_{\mathcal{T}_{i}}(f_{\{\phi_{i},\theta\}}(x), y)$$

Context parameters:

Task-specific, the only thing that's updated test time. Represent task embedding.



Network parameters:

- Shared across tasks, fixed at test time.
- Trained in outer loop only.

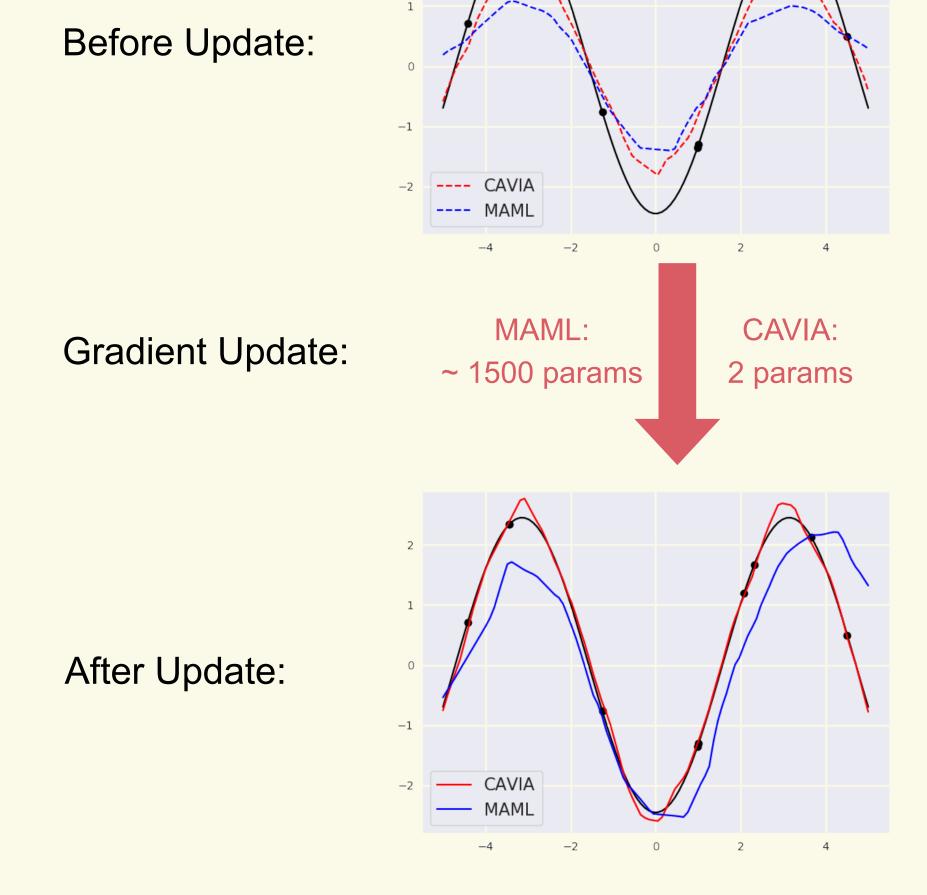
Less prone to overfitting compared to MAML

Context parameters are interpretable / reusable

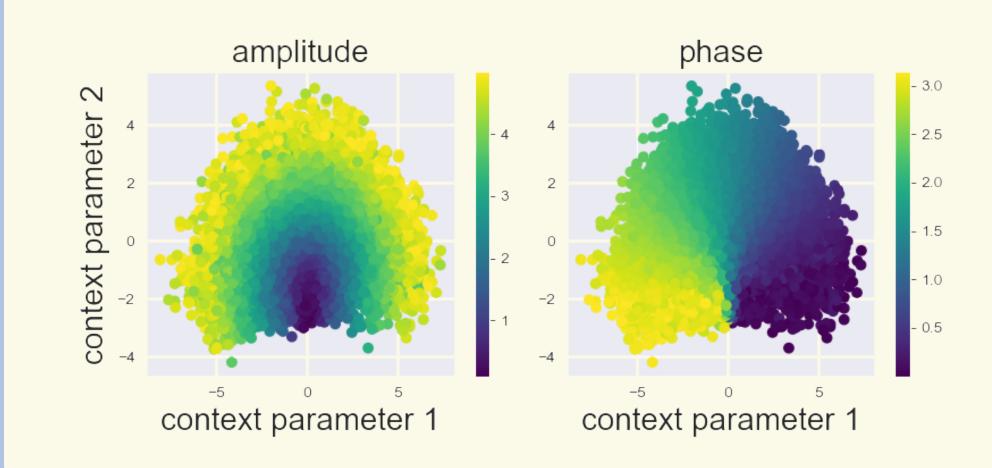
Easy to parallelise

Sine Curve Regression

Task = sine curve with randomly chosen amplitude and phase.



Visualisation of the learned context parameters:



Few-Shot Classification

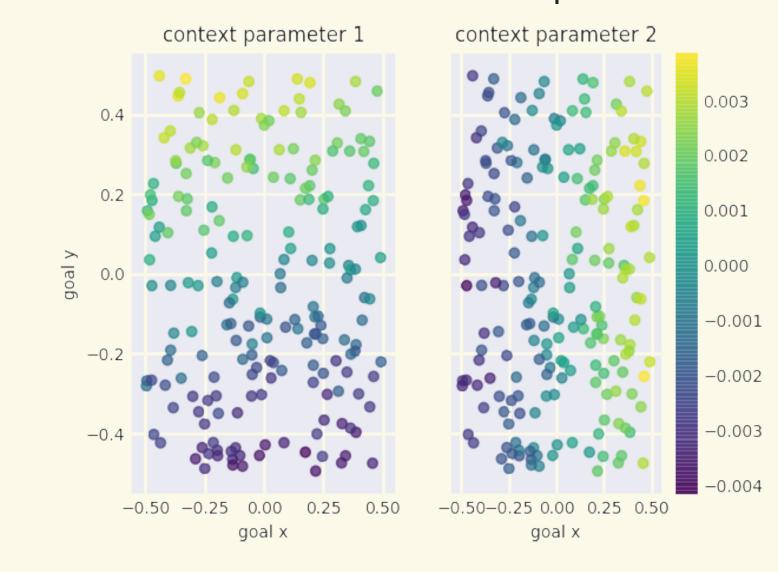
- Mini-ImageNet benchmark
- Number of context parameters: 100
- Increased network size leads to:
- overfitting for MAML
- better performance for CAVIA

	5-way accuracy		
Method	1-shot	5-shot	
Matching Nets (Vinyals et al., 2016)	46.6%	60.0%	
Meta LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$ 60.60 \pm 0.71\% $	
Prototypical Networks (Snell et al., 2017)	$46.61 \pm 0.78\%$	$65.77 \pm 0.70\%$	
Meta-SGD (Li et al., 2017)	$50.47 \pm 1.87\%$	$64.03 \pm 0.94\%$	
REPTILE (Nichol & Schulman, 2018)	$49.97 \pm 0.32\%$	$65.99 \pm 0.58\%$	
MT-NET (Lee & Choi, 2018)	$51.70 \pm 1.84\%$	-	
VERSA (Gordon et al., 2018)	$53.40 \pm 1.82\%$	67.37 ± 0.86	
MAML (32) (Finn et al., 2017a)	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$	
MAML (64)	$44.70 \pm 1.69\%$	$61.87 \pm 0.93\%$	
CAVIA (32)	$47.24 \pm 0.65\%$	$59.05 \pm 0.54\%$	
CAVIA (128)	$49.84 \pm 0.68\%$	$64.63 \pm 0.54\%$	
CAVIA (512)	$51.82 \pm 0.65\%$	$ 65.85 \pm 0.55\% $	
CAVIA (512, first order)	$49.92 \pm 0.68\%$	$63.59 \pm 0.57\%$	

Reinforcement Learning

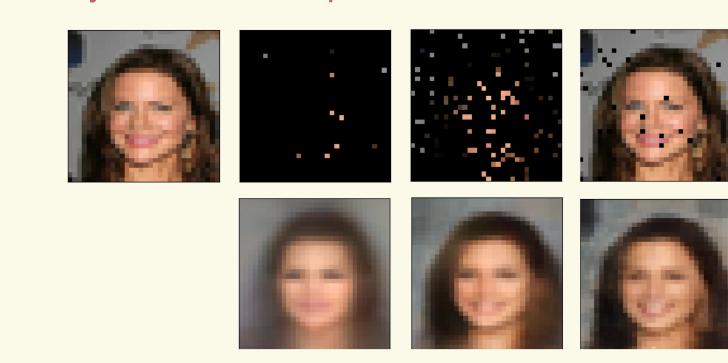
2D Navigation: Task = goal position.

- Visualisation of learned context parameters:



MuJoCo Cheetah (Vel & Dir):

- Performs similar to MAML, with only 50 context parameters
- Image Completion: CelebA
- Challenging regression task (Garnelo et al. 2018)
- Number of context parameters: 128
- CAVIA learns low-level image embeddings solely via backward pass



	Random Pixels		Ordered Pixels			
	10	100	1000	10	100	1000
CNP*	0.039	0.016	0.009	0.057	0.047	0.021
CNP* MAML	0.040	0.017	0.006	0.055	0.047	0.007
CAVIA	0.037	0.014	0.006	0.053	0.047	0.006

Number of adapted paramers

- When only task identification is required, don't update entire net!
- Possible weakness of current benchmarks: adaptation required is sometimes small