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	 2D Navigation: Task = goal position. 
		  - Visualisation of learned context parameters:

Network parameters:
Shared across tasks, fixed at test time.
Trained in outer loop only.

Context parameters:
Task-specific, the only thing that’s updated test time.
Represent task embedding. Less prone to overfitting 

compared to MAML

Context parameters are 
interpretable / reusable

Task = sine curve with randomly chosen 
amplitude and phase.

MAML:  
~ 1500 params

Before Update:

Visualisation of the learned context parameters:

	 - Mini-ImageNet benchmark
	 - Number of context parameters: 100
	 - Increased network size leads to:
		  - overfitting for MAML
		  - better performance for CAVIA

	 - Challenging regression task (Garnelo et al. 2018)
	 - Number of context parameters: 128
	 - CAVIA learns low-level image embeddings 
	    solely via backward pass

Easy to parallelise

Many tasks & benchmarks don’t require generalisation beyond task  
identification. In this case, we shouldn’t update all parameters!

Hence we separate the network into task-specific parameters   , and  
shared parameters   , trained similarly to MAML as follows.
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	 MuJoCo Cheetah (Vel & Dir): 
  		  - Performs similar to MAML,  
	        with only 50 context parameters

After Update:

Gradient Update: CAVIA: 
2 params

Conclusion  

- When only task identification is required, 
  don’t update entire net!
- Possible weakness of current benchmarks:  
  adaptation required is sometimes small

Sine Curve Regression Few-Shot Classification Reinforcement Learning

Image Completion: CelebA

Idea: Learn network initialisation s.t. at test time, only few gradient steps are neces-
sary to perform well. 

Inner loop:	    - Sample batch of tasks,
				       - For each task:	 - Get train/test data:           ,
										          - Adapt model:

Outer loop:   - Update initial parameters for good test performance 
       			      by backpropagating through inner loop update

Background: MAML (Finn et al., 2017)

Problem Setting: Few-Shot Learning
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Given distributions over tasks:                   ,
- Meta-learn how to adapt fast to any tasks from  
- Evaluate generalisation ability on tasks from 
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Inner loop update:
	 For each task i, update context parameters:

Outer loop update:
	 Update shared parameters    
    using test loss from individual tasks
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