
C. Baron INSA GEI Department Introduction to Real-Time Systems 1

Real-Time Systems

Characterizing an RTS

SUMMARY

claude.baron@insa-toulouse.fr

C. Baron INSA GEI Department Introduction to Real-Time Systems 2

Real-time/embedded systems
l Real-time system: must provide a service in a time-

critical context
Ø system evolution (reactive system)
Ø time constraints (deadlines)

l as opposed to interactive or transformational systems
l Embedded system:

Ø autonomous, characterized by a tight coupling between
hardware and software

Ø used for a very specific purpose
Ø often part of a larger system
Ø ~90% of the global processor market

C. Baron INSA GEI Department Introduction to Real-Time Systems 3

Relevance of response time
l Produce results that are not only accurate (logical

accuracy)...
l but are also delivered within a specific time (temporal

accuracy) and are compatible with the system’s evolution
Ø The time scale depends on the system:

ü a few milliseconds for an air navigation system
ü several minutes/hours for the control of a chemical reactor

l In a real-time system, a mathematically accurate
calculation that is delivered after a predefined deadline
equals a false result

l Real-time does not mean fast!

C. Baron INSA GEI Department Introduction to Real-Time Systems 4

Definitions vary depending on the subject matter

Common thread: the importance of the time factor

RTS must react according to the flow of time (timeliness property)

=> differentiates time-constrained applications from others

A real-time system is defined as a system whose correctness of the
system depends not only on the logical results of computations, but
also on the time at which the results are produced [STA 88].

An out-of-time accurate result equals a false result.

Note: Real-time does not necessarily involve rapidity, but rather timely
execution that takes into account the phenomenon’s dynamics

Key concepts in real-time systems

C. Baron INSA GEI Department Introduction to Real-Time Systems 5

A minimum performance is often required (response time,
communication deadlines, etc.)

Insufficient:
 - correctly adapting them to target time constraints
 (using appropriate scheduling algorithms)
 - oversizing the system

All real-time applications interact with their environment (industrial
processes, aircraft engines, cities, patients, conference call participants,
children using their game consoles, etc.).

The nature of the environment directly affects the criticality of the actions
performed in a real-time application.

Key concepts in real-time systems

C. Baron INSA GEI Department Introduction to Real-Time Systems 6

In addition to time constraints, and depending on the field of
application, the definitions given to real-time applications include
fundamental properties:
predictability of behavior and fault tolerance.

Predictability of behavior: in so-called time-critical real-time
applications (control of industrial processes or military machinery),
compliance with time constraints is imperative under all
circumstances (including instances of processor and network
overload).

The degree of predictability varies from one application to another: while some
require absolute predictability, others settle for a fixed threshold below which the
quality of the service provided is called into question.

Key concepts in real-time systems

C. Baron INSA GEI Department Introduction to Real-Time Systems 7

Criticality: a criterion for classifying real-time applications according to severity (cost
incurred should time constraints not be respected)

Time fault: should time constraints not be respected
 - benign: do not significantly affect the service provided
 - catastrophic: loss of human life, financial loss, environmental
 pollution, etc.

Classification of real-time systems:
− Systems with critical time constraints (hard real-time systems): failure to comply
with time constraints can entail failures with potentially serious consequences. If the
deadline is missed, a catastrophic fault ensues.
− Systems with strict time constraints (firm real-time systems): occasional missed
deadlines are tolerated. A (benign) fault ensues when a deadline is missed.
− Systems with flexible time constraints (soft real-time systems): no fault ensues
when a deadline is missed; the result can be used even if delivered after the deadline.

Key concepts in real-time systems

C. Baron INSA GEI Department Introduction to Real-Time Systems 8

Key concepts: determinism

• Determinism
– goal to be reached to predict the temporal behavior of the

system
• hard real-time: determine whether all deadlines for all activities

will be met
• soft real-time: determine, for example, what the average delays

will be

• Deterministic system
– Based on the current state of the system, it responds to a given

stimulus in a “predictable” way
• Non-deterministic system

– Based on the current state of the system, it cannot guarantee
what action (portion of code) it will execute

C. Baron INSA GEI Department Introduction to Real-Time Systems 9

Key concepts: accuracy

• Logical correctness
– Outputs consistent with inputs
– The system behaves as expected in response to given inputs

(data)

• Timeliness
– Time constraints are met
– Outputs produced “at the right time”

C. Baron INSA GEI Department Introduction to Real-Time Systems 10

Key concepts: predictability
• Predictability: ability to detect the future occurrence of a

missed deadline and to respond accordingly...
– either by using preemptive fault-tolerance techniques
– or by migrating tasks to another site in the distributed system

• This is “THE” feature required of a real-time system, above all
else!
– under a set of assumptions regarding the load (e.g. input

frequency) and uncontrollable errors (e.g. bit error rate of the
bus), prove that...

– all constraints (especially deadlines) are respected...
– at least for critical system tasks

 What would you prefer: an on-board computer that triggers the ABS
after 1 ms in 99% of cases, or one that triggers the ABS after 10 ms
but in 100% of cases?

C. Baron INSA GEI Department Introduction to Real-Time Systems 11

• Rapidity: context changes, low-complexity scheduling
algorithms, access to data structures, etc.

• Adaptability: deal with online changes (new tasks to execute,
loss of network nodes) without compromising the rapidity
constraints imposed by the process

l Predictability:
Ø assess in advance whether a system will meet its time

constraints
Ø knowledge of parameters associated with task calculations

ü overall calculation time for each task
ü periodicity and jitter
ü preemption

Ø worst-case performance evaluation
Ø identify the best scheduling algorithm

Key concepts: rapidity and adaptability

C. Baron INSA GEI Department Introduction to Real-Time Systems 12

Key concepts: Hard/Soft Real-Time
Hard Real-Time
• failure to respect time constraints can result in critical situations
• Hard RTS are often used as control devices in dedicated

applications
Soft Real-Time
• the system can “tolerate” certain time-constraint breaches
• certain constraints must still be respected, beyond which the

system is rendered unusable (videoconferencing, network gaming)
• Note:

– the distinction between the two is somewhat vague
– hard and soft real-time tasks can coexist in a given system, even alongside

tasks with no time constraints at all

C. Baron INSA GEI Department Introduction to Real-Time Systems 13

Key concepts: Hard/Soft Real-Time

• Practical implications
– Dramatic consequences when the results obtained do not

meet certain criteria of logical and—above all—temporal
consistency.

– The appropriate response to a missed deadline depends on
the application:
• The most frequent solution is to opt for a degraded behavior.
• Obviously, preventing failure by minimizing unpredictable results

(particularly from a temporal point of view) is preferable.

C. Baron INSA GEI Department Introduction to Real-Time Systems 14

– ‘Time’ differs from one application to another

– Real-time depends on the point of view
• Example: “real-time” broadcast of a match
– from the point of view of the match, stadium lighting must be

controlled in real-time (any failure would bring the match to a
halt)
– broadcast failure has no impact on the course

of the match itself (although you may miss
the goal as it happens!)

– ‘Time’ can then take many forms:
• The response time to an event
• The cycle time of a system
• The relativity of the concept of time

Understanding the notion of ‘time’

C. Baron INSA GEI Department Introduction to Real-Time Systems 15

– event = time-discontinuous signal

– response time = maximum time the process can accept to obtain a
relevant response from the system to any event generated by the
process

– Any system must be capable of handling all events generated by
the process, while respecting their specific response time.

– Questions will arise regarding the criticality of the event and the
notion of relative priority between all events, since a real-time
system (no matter how powerful) is incapable of processing all
event instances simultaneously.

 The system will be real-time if and only if it can process all events
in the allotted time.

Response time to an event

C. Baron INSA GEI Department Introduction to Real-Time Systems 16

– Designing a real-time system involves:
• Processing both cyclical and event-driven information, so as to include

multimedia data (e.g. the case of the telephone, where a constant
data rate must be maintained between remote stations, as well as
video with bitrates of several dozen Mbps w/o compression).

• Accepting all types of data in the same system while respecting
temporal and processing criteria for each item of data, knowing that
the results of such processing must be accurate and on schedule for
the application to work.

-> A rather relative notion!

– If we were to qualify/quantify it, we could say that it is in fact the
combination of the system’s response time with the workload to
perform during said time

Relativity of the concept of time

C. Baron INSA GEI Department Introduction to Real-Time Systems 17

• The technologies to implement depend directly on the time
performance required

Different RTS implementations

C. Baron INSA GEI Department Introduction to Real-Time Systems 18

5 axes of freedom
 closely related: modifying one implies adjusting choices made on the others

(finding the best compromise)
1. Architecture

– Can cover several levels; we speak of system architecture and hardware architecture (see 5th year
course)

2. Communication between processes
– Problems such as communication between remote processes running on different processors and

using different operating systems
3. Computer technology

– A variety of solutions for computers and/or processors
– Paradoxically, may pose a number of problems: finding the one(s) best suited to the application’s

constraints?
4. Operating systems

– A key element
– Frequent evolutions to keep pace with the life cycle of the various available solutions:

• Unix and its various versions (LynxOS, HP-UX, etc.)
• Windows (XP, CE, XP Embedded)
• Linux and its forks
• OS9, VxWorks, VRTX, OSE, μCOS, OSEK, etc.
• Proprietary operating systems

– Unstable market -> “Should we use libreware or proprietary solutions?”
5. Languages

– Facilitate application development (level of abstraction)
– Help render real-time applications more accessible
– Provide code portability

Choices available to the RTS designer

C. Baron INSA GEI Department Introduction to Real-Time Systems 19

• Classic OSs limited for real-time applications
• Mechanisms ill-suited to real-time
– scheduling policies:

• aimed at balancing execution time
• not adapted to tasks that are more critical than others

– mechanisms for accessing shared resources must be adapted to
remove temporal uncertainties (I/O management entails long
delays, sometimes unbounded)

– unoptimized interrupt management
– need to rethink virtual memory management mechanisms (e.g.

swapping)
– timer control is not fine enough (for many real-time applications)

Regarding the choice of OS

C. Baron INSA GEI Department Introduction to Real-Time Systems 20

Why use an RTOS?
Real-time computer systems involve a combination of

software and hardware
Key role of software (among other things): to manage hardware

resources efficiently, so as to perform specific tasks within
specific time limits

=> RTOS: providing services to application software
These services depend on available hardware resources
Examples:
• Task management
• Synchronization management
• Communication management
• Memory management
• Time management
• Management of

peripherals CPU

Program
or OS

Diagnostic
ports

D/A converter

Auxiliary
systems

MemoryASIC
(application-specific

integrated circuit)

HCI

A/D converter

System
backup and
security

External
environment

Sensors Actuators

C. Baron INSA GEI Department Introduction to Real-Time Systems 21

RTOS main features
To guarantee compliance with time constraints, it is

essential that:
its different services and algorithms used run in bounded time

=> the RTOS must be deterministic and preemptive, so that the
highest priority task can take over during the next tick

in this case, the evolution of the RTS can be predicted (in theory)
the different potential sequences of processing ensure that none of

them exceeds its time limit
=> Key feature of an RTOS = predictable response time to an

external stimulus
If a peripheral generates an interrupt, the RTOS must respond by

launching the service within a known period of time and
regardless of processor load

An OS can be deemed an RTOS when context switching and
response time to an interrupt are guaranteed to occur
within a 10 µs-period

C. Baron INSA GEI Department Introduction to Real-Time Systems 22

Real-Time Operating System
Real-Time Operating System:

Multitasking operating system for real-time applications
limited set of functions determined by the hardware design
reacts to input within a specific time period
guarantees a certain capability within a specified time constraint

Characteristics:
while facilitating the creation of an RTS, it does not guarantee that

the end result will respect real-time constraints
doesn’t necessarily target performance and speed but providing

services and primitives which—if used correctly—can ensure
meeting the required deadlines

uses specialized schedulers to provide RTS developers with tools
and primitives required to achieve the intended real-time behavior
in the final system

Requirements:
multitasking
priority assignment to processes
adequate number of interrupt levels

C. Baron INSA GEI Department Introduction to Real-Time Systems 23

Real-Time Operating System
4 main roles of an RTOS

Process Management
Process creation
Process loading
Process execution control
Interaction of the process with signal events
Process monitoring
CPU allocation
Process termination

Interprocess Communication
Synchronization and coordination
Deadlock and Livelock detection
Process Protection
Data Exchange Mechanisms

Memory Management
Services for file creation, deletion, reposition and protection

Input/Output Management
Handles requests and release subroutines for a variety of

peripherals and read, write and reposition programs
C. Baron INSA GEI Department Introduction to Real-Time Systems 24

RTOS structure

The kernel controls
ü peripherals
ü program execution (processes)
ü memory allocated to each process
ü process scheduling
ü inter-process communication and synchronization
ü network protocol management
ü small, compact software (less than 10 Kb)
Þessential software for real-time processing:

• scheduler
• task management
• inter-task communication
• resource allocation, hardware

 interface, security
Þ somewhat limited but powerful system

The executive
ü built on the kernel
ü includes features such as

• I/O management
• enhanced cooperation

mechanisms (based on those of
the kernel)

• file system management
• accessibility (e.g. remote

connection)

The operating system
• includes all application programming and
fine-tuning tools (compiler, debugger,
simulator, analyzer, etc.)

Built around:

a kernel that provides the essential algorithms for
scheduling and resource management

services
(file system management, network access, etc.)

C. Baron INSA GEI Department Introduction to Real-Time Systems 25

Role of a real-time executive
A real-time executive can be:

event driven: system switches tasks when an event of higher
priority needs service

time sharing: system switches tasks on regular clock interrupts and
on events

=> Calls to the executive ensue from:
event triggered by the process

the process of receiving and handling the hardware interrupt
associated with these events triggers the call to the executive

time
the interrupt regularly generated by the real-time clock on the
computer triggers the call to the executive

the tasks themselves

C. Baron INSA GEI Department Introduction to Real-Time Systems 26

Roles
schedule task execution
protect access to shared resources
centralizing role; an interface that:

redirects process events to the corresponding tasks
triggers task wake-up when waiting for a deadline or start time
receives and retransmits synchronization signals or data between

asynchronous tasks

Provides user-accessible services for diverse tasks
task management: activation, suspension, resumption, forced termination, etc.
hardware event management (interrupts)
synchronization: sending/receiving of “internal” signals by tasks

=> The executive provides services for generating and monitoring these
“software events”

inter-task message communication (mailboxes, data exchange ports or
client-server calls)

time management: enabling deferred, scheduled or periodic task wake-ups
management of shared resources, memory, exceptions, etc.

Role of a real-time executive

C. Baron INSA GEI Department Introduction to Real-Time Systems 27

Why use an RTOS?
Other uses: portability, application reuse

C. Baron INSA GEI Department Introduction to Real-Time Systems 28

Structure of a generalized executive
Input interface
• receives application requests
• performs context backups
• redirects requests

{ }
Handlers
• managers of basic executive
objects
• each features data structures
(tables, lists), in the form of
descriptors, which are an
abstract representation of the
objects used by the application
• cooperation between handlers

Scheduler
• module in charge of managing the
critical resource of the processor
• implements a scheduling algorithm
based on the notion of static priority (in
industrial applications)
• is only called upon by the handlers
when necessary

Dispatcher
• acts as a mirror of the input interface
• in charge of reactivating the current
task (or one newly chosen by the
scheduler) by restoring its execution
context, thus terminating the execution
of a service

Interrupts
• executive services
can be called upon
either by application
tasks or by external
requests (clock
interrupt, sensor
signaling an alarm,
network card
receiving a message,
etc.)
• requests are relayed
by a short code
sequence (interrupt
service routine) which
calls upon an
executive service

