

TD 6

Limit cycle in a closed-loop system with a saturation function (describing function)

Objective : Apply the describing function approximation to predict the presence of a limit cycle in a closed-loop system with a saturation function.

Consider the closed-loop system in the figure below. The control signal is limited by a saturation function. Its slope is unitary and the saturation limit is ± 20 .

- 1. Compute the coefficient $N(A, \omega)$ of the describing function of the nonlinearity.
- 2. Numerical values are as follow, $a=3,\ b=0,\ \tau_1=0.1s$ and $\tau_2=0.02s$. Give the minimal value $K_{s_{min}}$ of K_s guaranteeing that a limit cycle exists. Give the value of the amplitude and the frequency of the limit cycle for $K_s=2K_{s_{min}}$.
- 3. Is the limit cycle stable?
- 4. Using Matlab, verify with numerical simulations the previous calculations.
- 5. Now b = 1, use Matlab to determine the condition of existence of a limit cycle. From the Nyquist plot, what is the minimal value of K_s (to have a limit cycle)?