
MODIA Projet de Modélisation par EDP

Modélisation d'un réchau�eur

On s'intéresse dans ce projet à la modélisation d'un réchau�eur thermique tel que sché-
matisé sur la �gure 1 ci-dessous.

Figure 1 � Schéma de prinicpe du réchau�eur à modéliser

Dans ce dispositif, un �uide circule entre deux plaques metalliques chau�ées par e�et
joule à l'aide de résistances électriques situées à l'intérieur des plaques. Le �uide entre
par le côté gauche à la température Te et ressort plus chaud, à la tempéraure Ts(y), côté
droit. On souhaite étudier comment varie Ts(y), en régime stationnaire, lorsqu'on fait
varier certains paramètres : puissance thermique fournie, vitesse du �uide, conductivités
du �uide et du solide, distance entre les plaques. . .

Pour simpli�er, on suppose que le problème est bidimensionnel c'est-à-dire que la solution
ne dépend que des variables x et y, ce qui revient à négliger les e�ets liés aux variations
en z de la solution devant les e�ets liés aux variations en x et en y. De plus, en tenant
compte de l'axe de symétrie du réchau�eur, on peut se limiter à résoudre le problème sur
le domaine Ω = Ωs ∪ Ωf représenté sur la �gure 2 ci-dessous.

1. Equations et conditions aux limites du problème. Dans le solide, l'EDP modé-
lisant le transport de la chaleur en régime stationnaire s'écrit :

−ks∆Ts = fs (1)

où ∆ =
∂2

∂x2
+

∂2

∂y2
et où Ts désigne la température dans le solide, ks la conductivité ther-

mique du solide (supposée indépendante de x et y pour simpli�er le problème) et fs(x, y)



Figure 2 � Domaine de calcul de la solution numérique tenant compte de la symétrie du
problème

la densité volumique de puissance produite par e�et Joule au point (x, y) du solide.

Dans le �uide, la chaleur est transportée à la fois par convection et par di�usion. Compte
tenu de la géométrie du réchau�eur, on suppose que la vitesse du �uide est alignée avec
la direction x et qu'elle ne dépend que de la variable y (canal de section constante). On
la note uf (y). L'équation de la chaleur dans le �uide s'écrit donc :

ρfcfuf
∂Tf

∂x
− kf∆Tf = 0 (2)

où Tf désigne la température dans le �uide, kf la conductivité thermique du �uide, ρf sa
masse volumique et cf sa capacité calori�que massique.

A l'interface entre le �uide et le solide, la température est continue et la conservation de
l'énergie impose la continuité du �ux de chaleur. L'interface étant alignée avec la direction
x, on doit donc avoir :

∀x ∈ [0, L], kf
∂Tf

∂y
(x, 0) = ks

∂Ts

∂y
(x, 0) et Tf (x, 0) = Ts(x, 0) (3)

l'interface solide-�uide qui sépare le domaine occupé par le �uide Ωf et le domaine occupé
par le solide Ωs étant située en y = 0.

On peut regrouper ces trois équations en une seule en les remplaçant par l'équation :

ρcu
∂T

∂x
− div(k∇⃗T ) = f (4)

où par dé�nition on a posé :

ρ(x, y) =

{
ρf si (x, y) ∈ Ωf

ρs si (x, y) ∈ Ωs
c(x, y) =

{
cf si (x, y) ∈ Ωf

cs si (x, y) ∈ Ωs

k(x, y) =

{
kf si (x, y) ∈ Ωf

ks si (x, y) ∈ Ωs
f(x, y) =

{
0 si (x, y) ∈ Ωf

fs(x, y) si (x, y) ∈ Ωs

Page 2



u(x, y) =

{
uf (y) si (x, y) ∈ Ωf

0 si (x, y) ∈ Ωs
T (x, y) =

{
Tf (x, y) si (x, y) ∈ Ωf

Ts(x, y) si (x, y) ∈ Ωs

Le terme k∇⃗T n'étant pas dérivable (il est même discontinu à l'interface �uide-solide),
l'équation (4) doit être interprétée au sens faible et discrétisée avec la méthode des volumes
�nis qui, contrairement à la méthode des di�érences �nies, ne suppose pas une forte
régularité de la solution. Une fonction T continue sur Ω, de classe C2 sur Ωs et sur Ωf ,
est dite solution faible de l'EDP (4) si et seulement si pour toute fonction ϕ de classe C1

sur Ω, nulle sur ∂Ω, on a :∫
Ω

ρcu
∂T

∂x
ϕdxdy +

∫
Ω

k∇⃗T.∇⃗ϕdxdy =

∫
Ω

fϕdxdy (5)

Pour que le problème soit bien posé, il reste à préciser les conditions aux limites à ap-
pliquer sur la frontière de Ω. Concernant la frontière du domaine solide (à l'exception de
l'interface avec le �uide), on supposera qu'elle est isolée thermiquement et on appliquera
une condition de Neumann homogène. On aura donc :

∂xT (0, y) = 0, ∀y ∈ [0, Hf ]
∂xT (L, y) = 0, ∀y ∈ [0, Hf ]
∂yT (x,−Hs) = 0 ∀x ∈ [0, L]

(6)

Sur les bords du domaine �uide, il faut distinguer trois cas. En x = 0 et y ∈ [0, Hf ]
(entrée du �uide), on supposera que la température du �uide est imposée. En x = L
et y ∈ [0, Hf ] (sortie du �uide), on fera l'hypothèse que le �ux de chaleur conductif est
nul. En�n en y = Hf et x ∈ [0, L] (bord supérieur), on appliquera une condition de
symétrie. Finalement, les conditions aux limites correspondant aux frontières extérieures
du domaine �uide seront donc les suivantes :

T (0, y) = Te ∀y ∈ [0, Hf ]
∂xT (L, y) = 0 ∀y ∈ [0, Hf ]
∂yT (x,Hf ) = 0 ∀x ∈ [0, L]

(7)

2. Données physiques du problème. Les valeurs par défaut des paramètres physiques
et géométriques sont résumées dans le tableau suivant :

ρf cf kf ks Hs Hf L
kg m−3 Jkg−1 W m−1 K−1 W m−1 K−1 m m m
1000 4180 0.60 16 0.025 0.01 1.0

L'expression de la vitesse du �uide est la suivante :

uf (y) = umax

(
2
y

Hf

− y2

H2
f

)
(8)

On note que uf est nulle en y = 0 (condition d'adhérence du �uide à la paroi du solide)
et uf est maximale en y = Hf , sa dérivée s'annulant en y = Hf par symétrie. Par défaut
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on prendra : umax = 0.001 m s−1.

En�n pour le terme source modélisant la dissipation de chaleur par e�et Joule au sein du
métal, on utilisera l'expression suivante :

fs(x, y) =

{
Pdis, ∀(x, y) ∈ [xl, xr]× [yb, yt]
0, ∀(x, y) /∈ [xl, xr]× [yb, yt]

(9)

Les valeurs des paramètres xl, xr, yb, yt, Pdis sont précisées dans le tableau ci-dessous :

xl xr yb yt Pdis

m m m m W m−3

0.1 L 0.9 L -0.8 Hs -0.2 Hs 105

3. Questions théoriques.

� 1) Soit Ts et Tf des fonctions de classe C
2 respectivement sur Ωs et sur Ωf . Montrer

que si Ts et Tf sont solutions de (1)- (2)-(3) alors la fonction T dé�nie par

T (x, y) =

{
Tf (x, y) si (x, y) ∈ Ωf

Ts(x, y) si (x, y) ∈ Ωs

est solution faible de (4) et véri�e donc (5) pour toute fonction ϕ de classe C1 sur
Ω, nulle sur ∂Ω.

� 2) Réciproquement, montrer que si T est une fonction continue sur Ω, de classe C2

sur Ωs et sur Ωf , solution faible de (4), alors ses restrictions Ts, respectivement Tf ,
à Ωs, respectivementΩf , véri�ent (1)- (2)-(3).

� 3) Montrer qu'il existe un unique couple de fonctions C2 véri�ant (1)- (2)-(3) et
les conditions aux limites (6)- (7).

� 4) Si T est une solution faible régulière de (4) et C un ouvert quelconque, de
frontière régulière et inclus dans Ω, montrer que :∫

∂C

ρcT v⃗.n⃗dS −
∫
∂C

k∇⃗T.n⃗dS− =

∫
C

f(x, y)dxdy (10)

où v⃗ =

(
u
0

)
. Dans la démonstration, on considérera trois cas : le cas où C est

inclus dans Ωs, le cas où C est inclus dans Ωf et le cas où C est à cheval sur Ωs et
ωf .

� 4) Montrer que la solution du problème (1)- (2)-(3)-(6)- (7) véri�e :∫ Hf

0

ρfcfuf (y)Tf (L, y)dy−
∫ Hf

0

(
ρfcfuf (y)Te − kf

∂Tf

∂x
(y)

)
dy =

∫
Ωs

fs(x, y)dxdy

(11)
et donner la signi�cation physique de cette relation.
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4. Discrétisation du problème et programmation en Python. Pour discrétiser le
problème, on utilise la méthode des volumes �nis en s'appuyant sur l'équation (10).

Compte tenu de la forme géométrique simple du domaine de calcul, on choisit de localiser
les valeurs de la solution discrète aux noeuds Nij d'une grille régulière de pas constants
∆x et ∆y (comme pour la méthode des di�érences �nies) et on note Tij la valeur de la
solution discrète au noeud Nij.

A chaque noeud Nij on associe un volume de contrôle Cij, correspondant au rectangle de
centre Nij et de dimensions ∆x×∆y (voir �gure 3 ci-dessous).

Figure 3 � Maillage du domaine de calcul et volumes de contrôle associés

Pour chacun des volumes de contrôle, on applique l'équation (10) en remplaçant C par
Cij, ce qui donne :∫

∂Cij

ρcv⃗.n⃗dS −
∫
∂Cij

k∇⃗T.n⃗dS− =

∫
Cij

f(x, y)dxdy (12)

Il reste maintenant à préciser comment on discrétise chacun des trois termes de (12).

Le problème discret comporte L = IJ inconnues, que l'on peut étiqueter indi�éremment
soit par un numéro global l variant entre 0 et L− 1, soit par un double indice (i, j) avec
i variant de 0 à I − 1 et j variant de 0 à J − 1. On peut donc noter Tl la valeur de la
solution discrète dans le volume de contrôle Cl = Cij où l désigne le numéro global du
noeud Nij. Si on adopte l'ordre lexicographique, on a la relation : l = i+ j ∗ I.

Comme le montre la �gure 3, le volume de contrôle Cl est entouré de 4 volumes de contrôle
voisins dont les numéros peuvent être notés respectivement lo pour celui situé à gauche,
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le pour celui situé à droite, ls pour celui situé en dessous, ln pour celui situé au dessus.
Avec ces notations, on peut discrétiser l'équation (12) sous la forme suivante :

ρfcful[Tl − Tlo ]∆y +ko
Tl − Tlo

∆x
∆y −ke

Tle − Tl

∆x
∆y

+ks
Tl − Tls

∆y
∆x −kn

Tln − Tl

∆y
∆x = f l∆x∆y

(13)

Questions.

� 1) Justi�er la formule (13) et donner les expressions de ul, ke, ko, kn, ks et f l.
Pour trouver les expressions de ke, ko, kn et ks, on tiendra compte de la position
de l'interface solide-�uide et on se servira du fait que ∂xT et k∂yT sont continus à
travers l'interface.

� 2) Comment doit on modi�er (13) pour tenir compte de conditions aux limites ?
� 3) Montrer qu'on peut réécrire l'équation (13) (y compris sa variante pour les

noeuds situés à la frontière du domaine de calcul) sous forme matricielle : AT = S,
avec A une matrice creuse de dimension L×L et S, T des vecteurs de RL. Quel est
le nombre maximum de termes non nuls sur chaque ligne de A ? Donner l'expression
des termes diagonaux A(l, l) et des termes extra-diagonaux A(l, lo), A(l, le), A(l, ls),
A(l, ln). Donner également l'expression du terme général de S.

� 4) Ecrire l'algorithme permettant d'assembler la matrice A en parcourant tous les
noeuds du maillage. Idem pour le second membre S.

� 5) Compléter le programme Python fourni et écrire les fonctions permettant d'as-
sembler la matrice A et le second membre S.

5. Calcul de la solution numérique et analyse des résultats

� 1) En changeant la valeur de certains paramètres par rapport à la valeur par défaut,
proposer un cas test simple permettant de véri�er le bon comportement de votre
programme.

� 2) Une fois ce test réalisé, revenir aux valeurs par défaut de la section 2 "Données
physiques et géométriques" et calculer la solution correspondante. Tracer le champ
de température à l'aide de la fonction Python "contourf" ainsi que les pro�ls de
température y → T (x, y) à x �xé pour 5 valeurs de x : x = 0, x = 0.25L,x = 0.5L,
x = 0.75L, x = L. Commenter la forme et l'évolution suivant x des pro�ls de
température. On fera le calcul pour I = J = 20, I = J = 50 et I = J = 100. On
commentera l'in�uence du nombre de noeuds sur les résultats.

� 3) Calculer numériquement à l'aide de fonctions Python dédiées les trois intégrales
intervenant dans la formule (11) et montrer que la relation est bien satisfaite aux
erreurs numériques près .

� 4) On s'intéresse à l'in�uence de la vitesse sur le pro�l de température du �uide
en sortie. Refaire le calcul de la question 2) pour umax = 0.0005 m s−1 puis pour
umax = 0.002 m s−1. Que peut on observer ? En donner une explication qualitative.

� 5) On s'intéresse maintenant à l'in�uence de l'épaisseur du canal Hf sur le pro�l de
température dans le �uide en sortie. Refaire le calcul de la question 2) en gardant
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umax = 0.001 m s−1 mais en prenant Hf = 0.02 m puis Hf = 0.005 m . Que peut
on observer ? En donner une explication qualitative.

� 6) Pour �nir, on fait varier cette fois la masse volumique du �uide. Refaire le calcul
de la question 2) en gardant umax = 0.001, Hf = 0.01 m mais en prenant ρf = 500
kg m−3 puis ρf = 2000 kg m−3. Que peut on observer ? En donner une explication
qualitative.

� 7)* A partir de l'équation (4), montrer que la solution ne dépend que de 4 nombres
sans dimension dont on donnera l'expression. Véri�er le par des tests numériques.

Page 7


