MODIA Projet de Modélisation par EDP

Modélisation d’un réchauffeur

On s’intéresse dans ce projet a la modélisation d’un réchauffeur thermique tel que sché-
matisé sur la figure 1 ci-dessous.

FIGURE 1 — Schéma de prinicpe du réchauffeur a modéliser

Dans ce dispositif, un fluide circule entre deux plaques metalliques chauffées par effet
joule a l'aide de résistances électriques situées a I'intérieur des plaques. Le fluide entre
par le coté gauche a la température T, et ressort plus chaud, a la tempéraure Ty(y), coté
droit. On souhaite étudier comment varie Ty(y), en régime stationnaire, lorsqu’on fait
varier certains paramétres : puissance thermique fournie, vitesse du fluide, conductivités
du fluide et du solide, distance entre les plaques. . .

Pour simplifier, on suppose que le probléme est bidimensionnel c¢’est-a-dire que la solution
ne dépend que des variables = et y, ce qui revient a négliger les effets liés aux variations
en z de la solution devant les effets liés aux variations en = et en y. De plus, en tenant
compte de 'axe de symétrie du réchauffeur, on peut se limiter & résoudre le probléme sur
le domaine Q = Q, U Q_f représenté sur la figure 2 ci-dessous.

1. Equations et conditions aux limites du probléme. Dans le solide, TEDP modé-
lisant le transport de la chaleur en régime stationnaire s’écrit :

_ksATs = fs (1)
0? 0?

ou A = 922 + 92 et ou T désigne la température dans le solide, k4 la conductivité ther-
T Y

mique du solide (supposée indépendante de x et y pour simplifier le probléme) et f(z,y)



Axe de symétrie

FIGURE 2 — Domaine de calcul de la solution numérique tenant compte de la symétrie du
probléme

la densité volumique de puissance produite par effet Joule au point (z,y) du solide.

Dans le fluide, la chaleur est transportée a la fois par convection et par diffusion. Compte
tenu de la géométrie du réchauffeur, on suppose que la vitesse du fluide est alignée avec
la direction z et qu’elle ne dépend que de la variable y (canal de section constante). On
la note us(y). L’équation de la chaleur dans le fluide s’écrit donc :

oT
prfufa—; —kyAT; =0 (2)

ou Ty désigne la température dans le fluide, ky la conductivité thermique du fluide, ps sa
masse volumique et c; sa capacité calorifique massique.

A Tlinterface entre le fluide et le solide, la température est continue et la conservation de
I’énergie impose la continuité du flux de chaleur. I’interface étant alignée avec la direction
x, on doit donc avoir :

vz € [0, L), kf%(x,O):ksaa—:';(x,O) et Ty(z,0) = Ty(x,0) (3)

I'interface solide-fluide qui sépare le domaine occupé par le fluide 24 et le domaine occupé
par le solide {2, étant située en y = 0.

On peut regrouper ces trois équations en une seule en les remplacant par ’équation :
oT =
peus— = div(kVT) = f (4)
x

ou par définition on a posé :

[ pposi (my) e, e st (xy) €8y
p<x’y>_{ps si (z,y) € Qy C($’y)_{ cs st (z,y) €
0

kst (x,y) €Q _ st (z,y) € Q2
k@, y) = { kf si (z,y) € Qf fl@.y) = { fslz,y) si (z,y) € Q:
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~Juply) st (z,y) € Qy | Ty(x,y) si (z,y) € Qy
u(@,y) = { 0 st (w,y) € Qs Twy) = { Ti(z,y) si (z,y) € Qs

Le terme kVT n’étant pas dérivable (il est méme discontinu a l'interface fluide-solide),
I’équation doit étre interprétée au sens faible et discrétisée avec la méthode des volumes
finis qui, contrairement & la méthode des différences finies, ne suppose pas une forte
régularité de la solution. Une fonction T continue sur €, de classe C? sur Q, et sur Q_f,
est dite solution faible de 'EDP si et seulement si pour toute fonction ¢ de classe C*
sur €, nulle sur 99, on a :

/pcua—Tczbd:cdy—i—/kﬁT.ﬁqﬁd:cdy:/f(bd:cdy (5)
Q O Q Q

Pour que le probléme soit bien posé, il reste a préciser les conditions aux limites a ap-
pliquer sur la frontiére de Q. Concernant la frontiére du domaine solide (& I'exception de
'interface avec le fluide), on supposera qu’elle est isolée thermiquement et on appliquera
une condition de Neumann homogéne. On aura donc :

8,T(0,y) =0,  Vyel0,H]
9, T(L,y)=0, Yyel0,H] (6)
8,T(z,—H,) =0 Vz € [0,L]

Sur les bords du domaine fluide, il faut distinguer trois cas. En @ = 0 et y € [0, Hy]
(entrée du fluide), on supposera que la température du fluide est imposée. En x = L
et y € [0, Hy| (sortie du fluide), on fera I'hypothése que le flux de chaleur conductif est
nul. Enfin en y = Hy et x € [0, L] (bord supérieur), on appliquera une condition de
symétrie. Finalement, les conditions aux limites correspondant aux frontiéres extérieures
du domaine fluide seront donc les suivantes :

0
8,T(L,y) =0 Vye[0,H (7)
0

2. Données physiques du probléme. Les valeurs par défaut des paramétres physiques
et géométriques sont résumeées dans le tableau suivant :

Pf Cr k?f k?s Hs Hf L
kgm=3 | Jkgt | Wm P Kt | Wm™t K1 m m | m
1000 4180 0.60 16 0.025 | 0.01 | 1.0

L’expression de la vitesse du fluide est la suivante :

wp(Y) = U (2}% - ;—) (8)

On note que us est nulle en y = 0 (condition d’adhérence du fluide a la paroi du solide)
et us est maximale en y = Hy, sa dérivée s’annulant en y = H; par symétrie. Par défaut
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on prendra : Upmgz = 0.001 m s~ 1.

Enfin pour le terme source modélisant la dissipation de chaleur par effet Joule au sein du
métal, on utilisera ’expression suivante :

_ | Pus, Y(x,9) € [T1, 2] X [Yb, Y4]
fulwy) = { 0. V(ey) ¢ o] x [y ©)

Les valeurs des paramétres x;, x,, Y, yi, Pyis sont précisées dans le tableau ci-dessous :

Zy Ly Yb Yt Pdis
m m m m W m™3
01L|09L|-08H, |-02H,| 10°

3. Questions théoriques.
— 1) Soit T et T des fonctions de classe C? respectivement sur ), et sur 2¢. Montrer
que si T et Ty sont solutions de (I)- (2)-(B)) alors la fonction T définie par

_ | Ty(x,y) si (z,y) € Qy
T(x’y)_{ Ti(z,y) si (z,y) € Qs

est solution faible de et vérifie donc pour toute fonction ¢ de classe C* sur
2, nulle sur 0f2.

— 2) Réciproquement, montrer que si 7" est une fonction continue sur £, de classe C2
sur Q, et sur Qy, solution faible de 1 ), alors ses restrictions 7T, respectivement 77,
a Q, respectivement( s #, vérifient ( . .

— 3) Montrer qu’il existe un unique couple de fonctions C? vérifiant — — et
les conditions aux limites (6)- (7).

— 4) Si T est une solution faible réguliére de et C' un ouvert quelconque, de
frontiére réguliére et inclus dans €2, montrer que :

/ pcTT.idS — / kVT.7dS— = / flx,y)dzdy (10)
acC acC c

ol v = g . Dans la démonstration, on considérera trois cas : le cas ou C' est
inclus dans (), le cas ot C' est inclus dans €2 et le cas oit C est a cheval sur () et

(Uf.

— 4) Montrer que la solution du probleme (I)- (2)-(3)-(6)- (7) vérifie :
Hy Hy 8Tf
/ Pfcfuf(y)Tf<L7y)dy—/ (Pfcf“f( )Te — kg~ )> dy :/Q fs(@, y)dudy
0 0 s

(11)

et donner la signification physique de cette relation.
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4. Discrétisation du probléme et programmation en Python. Pour discrétiser le
probléme, on utilise la méthode des volumes finis en s’appuyant sur I’équation ([10)).

Compte tenu de la forme géométrique simple du domaine de calcul, on choisit de localiser
les valeurs de la solution discréte aux noeuds N;; d’'une grille réguliére de pas constants
Az et Ay (comme pour la méthode des différences finies) et on note 7j; la valeur de la
solution discréte au noeud Nj;.

A chaque noeud N;; on associe un volume de controle C;;, correspondant au rectangle de
centre NN;; et de dimensions Az x Ay (voir figure 3 ci-dessous).

® Nceud du maillage = centre d'un volume de contréle

] n
1 i Volume de contréle

FIGURE 3 — Maillage du domaine de calcul et volumes de controle associés

Pour chacun des volumes de controle, on applique 1’équation en remplacant C par
Cij, ce qui donne :

/ pet.idS — / kVT.RdS— = / fla,y)dzdy (12)
Il reste maintenant a préciser comment on discrétise chacun des trois termes de .

Le probléme discret comporte L = IJ inconnues, que 'on peut étiqueter indifféremment
soit par un numéro global [ variant entre 0 et L — 1, soit par un double indice (i, j) avec
1 variant de 0 & I — 1 et 5 variant de 0 & J — 1. On peut donc noter 7; la valeur de la
solution discréte dans le volume de controle C; = C;; ou | désigne le numéro global du
noeud N;;. Si on adopte 'ordre lexicographique, on a la relation : | =7+ j * I.

Comme le montre la figure 3, le volume de controle Cj est entouré de 4 volumes de controle
voisins dont les numéros peuvent étre notés respectivement [, pour celui situé a gauche,
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l. pour celui situé a droite, [, pour celui situé en dessous, [, pour celui situé au dessus.
Avec ces notations, on peut discrétiser I'équation ([12)) sous la forme suivante :

— -1 T, —T
T, — T, ]A ko——"Ay —k.———A
presully = T JAy - +ko—— N
(13)
- I =T, T, —
+kg A—yAI —ky, Ay Ax = [, AzAy

Questions.

— 1) Justifier la formule et donner les expressions de 1, ke, ko, kn, ks et f).
Pour trouver les expressions de k., ko, k, et ks, on tiendra compte de la position
de I'interface solide-fluide et on se servira du fait que 9,7" et k0, T sont continus a
travers l'interface.

— 2) Comment doit on modifier (13| pour tenir compte de conditions aux limites ?

— 3) Montrer qu’on peut réécrire 'équation (13 (y compris sa variante pour les
noeuds situés a la frontiére du domaine de calcul) sous forme matricielle : AT = 5,
avec A une matrice creuse de dimension L x L et S, T des vecteurs de R”. Quel est
le nombre maximum de termes non nuls sur chaque ligne de A ? Donner I’expression
des termes diagonaux A(l, ) et des termes extra-diagonaux A(l,1,), A(l, L), A(l, ),
A(l,1,). Donner également 'expression du terme général de S.

— 4) Ecrire l'algorithme permettant d’assembler la matrice A en parcourant tous les
noeuds du maillage. Idem pour le second membre S.

— 5) Compléter le programme Python fourni et écrire les fonctions permettant d’as-
sembler la matrice A et le second membre S.

5. Calcul de la solution numérique et analyse des résultats

— 1) En changeant la valeur de certains paramétres par rapport a la valeur par défaut,
proposer un cas test simple permettant de vérifier le bon comportement de votre
programme.

— 2) Une fois ce test réalisé, revenir aux valeurs par défaut de la section 2 "Données
physiques et géométriques" et calculer la solution correspondante. Tracer le champ
de température a l'aide de la fonction Python "contourf" ainsi que les profils de
température y — T'(z,y) a « fixé pour 5 valeurs de z : = 0, x = 0.25L,z = 0.5L,

= 0.75L, x = L. Commenter la forme et I’évolution suivant x des profils de
température. On fera le calcul pour I = J =20, =J =50et [ = J = 100. On
commentera I'influence du nombre de noeuds sur les résultats.

— 3) Calculer numériquement a l’aide de fonctions Python dédiées les trois intégrales
intervenant dans la formule et montrer que la relation est bien satisfaite aux
erreurs numeériques pres .

— 4) On s’intéresse a l'influence de la vitesse sur le profil de température du fluide
en sortie. Refaire le calcul de la question 2) pour ., = 0.0005 m s~ puis pour
Umaz = 0.002 m s~1. Que peut on observer ? En donner une explication qualitative.

— 5) On s’intéresse maintenant a I'influence de I'épaisseur du canal H sur le profil de
température dans le fluide en sortie. Refaire le calcul de la question 2) en gardant
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Upaz = 0.001 m s~! mais en prenant H; = 0.02 m puis H; = 0.005 m . Que peut

on observer 7 En donner une explication qualitative.

— 6) Pour finir, on fait varier cette fois la masse volumique du fluide. Refaire le calcul
de la question 2) en gardant ., = 0.001, Hf = 0.01 m mais en prenant p; = 500
kg m~3 puis p; = 2000 kg m~>. Que peut on observer ? En donner une explication
qualitative.

— 7)* A partir de I’équation , montrer que la solution ne dépend que de 4 nombres
sans dimension dont on donnera ’expression. Vérifier le par des tests numériques.
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