Functions |
void | arm_cmplx_mag_f32 (float32_t *pSrc, float32_t *pDst, uint32_t numSamples) |
| Floating-point complex magnitude.
|
void | arm_cmplx_mag_q15 (q15_t *pSrc, q15_t *pDst, uint32_t numSamples) |
| Q15 complex magnitude.
|
void | arm_cmplx_mag_q31 (q31_t *pSrc, q31_t *pDst, uint32_t numSamples) |
| Q31 complex magnitude.
|
Description
Computes the magnitude of the elements of a complex data vector.
The pSrc
points to the source data and pDst
points to the where the result should be written. numSamples
specifies the number of complex samples in the input array and the data is stored in an interleaved fashion (real, imag, real, imag, ...). The input array has a total of 2*numSamples
values; the output array has a total of numSamples
values. The underlying algorithm is used:
for(n=0; n<numSamples; n++) {
pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
}
There are separate functions for floating-point, Q15, and Q31 data types.
Function Documentation
void arm_cmplx_mag_f32 |
( |
float32_t * |
pSrc, |
|
|
float32_t * |
pDst, |
|
|
uint32_t |
numSamples |
|
) |
| |
- Parameters:
-
[in] | *pSrc | points to complex input buffer |
[out] | *pDst | points to real output buffer |
[in] | numSamples | number of complex samples in the input vector |
- Returns:
- none.
- Examples:
- arm_fft_bin_example_f32.c.
void arm_cmplx_mag_q15 |
( |
q15_t * |
pSrc, |
|
|
q15_t * |
pDst, |
|
|
uint32_t |
numSamples |
|
) |
| |
- Parameters:
-
*pSrc | points to the complex input vector |
*pDst | points to the real output vector |
numSamples | number of complex samples in the input vector |
- Returns:
- none.
Scaling and Overflow Behavior:
- The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format.
void arm_cmplx_mag_q31 |
( |
q31_t * |
pSrc, |
|
|
q31_t * |
pDst, |
|
|
uint32_t |
numSamples |
|
) |
| |
- Parameters:
-
*pSrc | points to the complex input vector |
*pDst | points to the real output vector |
numSamples | number of complex samples in the input vector |
- Returns:
- none.
Scaling and Overflow Behavior:
- The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format. Input down scaling is not required.