Introduction to Abaqus/CFD

Day 1

- Lecture 1 Review of CFD Fundamentals
- Lecture 2 Introduction
- Lecture 3 Getting Started with Abaqus/CFD
- Workshop 1 Unsteady flow across a circular cylinder
- Lecture 4 CFD Modeling Techniques – Part 1
Day 2

- **Lecture 5** CFD Modeling Techniques – Part 2
- **Lecture 6** Getting Started with FSI Using Abaqus/CFD
- **Workshop 1** Unsteady flow across a circular cylinder (continued)
- **Lecture 7** FSI Modeling Techniques
- **Workshop 2** Heat transfer analysis of a component-mounted electronic circuit board
- **Lecture 8** Postprocessing CFD/FSI Analyses
- **Workshop 2** Heat transfer analysis of a component-mounted electronic circuit board (continued)

Legal Notices

The Abaqus Software described in this documentation is available only under license from Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.

© Dassault Systèmes, 2010.

Printed in the United States of America

Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.10 Release Notes and the notices at: http://www.simulia.com/products/products_legal.html.
Revision Status

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>5/10</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>5/10</td>
</tr>
<tr>
<td>Workshop 1</td>
<td>5/10</td>
</tr>
<tr>
<td>Workshop 2</td>
<td>5/10</td>
</tr>
</tbody>
</table>

New for 6.10
Notes
Notes
Overview

- Computational Solid Mechanics (CSM) versus Computational Fluid Dynamics (CFD)
- CFD Basics
- Governing Equations
- Heat Transfer in Fluid Mechanics
- Non-dimensional Quantities in CFD
- Initial and Boundary Conditions
- Solution of Governing Equations
- Turbulence Modeling
Overview

• This lecture is optional.
• It aims to introduce the necessary fluid dynamics concepts and quantities that are relevant to the Abaqus functionality that is presented in the subsequent lectures.
 • If you are already familiar with these concepts, this lecture may be omitted.

Computational Solid Mechanics (CSM) versus Computational Fluid Dynamics (CFD)
CSM vs. CFD

Engineering problem
- Computational tools
- Answers

Computational solid mechanics (CSM)
- Mises stress
- Velocity contours
- Deformation of structure, Structural integrity
- Flow patterns

Computational fluid dynamics (CFD)
- Baffle in wind

CSM vs. CFD

Computational Solid Mechanics

Physics
- Governing equations
 - Equations of motion
 - Elasticity
- Sources of nonlinearity
 - Nonlinear elasticity
 - Plasticity
 - Conductivity
 - Specific Heat

Material properties
- Elasticity (linear, nonlinear)
- Plasticity
- Conductivity
- Specific Heat

Computational method
- Method
 - Finite element
- Discretization
 - FE mesh
 - “Stress concentrations” Interpolation order
- Model sizes
 - Maximum ~ 2-3 M
 - Routine analysis < 0.5 M
- Solution of discretized equations
 - Direct solvers

Framework
- Primary Lagrangian
 - Mesh deforms with material
- Arbitrary Lagrangian-Eulerian (ALE)
 - Mesh smoothing for large deformation
- Eulerian
 - Extreme deformation cases (CEL)

Boundary conditions, Loads
- Boundary conditions
 - Displacement, velocity, acceleration
- Loads
 - Point and distributed loads
 - Body forces
- Other loading
 - Contact interactions

Analysis types
- Static
- Dynamic
- Linear perturbation
- Frequency

Introduction to Abaqus/CFD
CSM vs. CFD

Computational Fluid Dynamics

Physics
- Governing equations
 - Equation of motion
 - Navier-Stokes (N-S) equations
 - Incompressible or Compressible
 - Specialized versions
 - Stokes flow
- Sources of nonlinearity
 - N-S equations are fundamentally nonlinear due to advective terms
 - Material nonlinearity
 - Non-Newtonian viscosity
 - Boundary nonlinearity
 - FSI

Material properties
- Viscosity
 - Newtonian, Non-Newtonian
- Conductivity
- Specific Heat

Computational method
- Method:
 - Finite volume
 - Finite element
 - Hybrid methods
- Discretization:
 - Finite volume mesh
 - "Boundary layers"
 - Treatment of various terms in equations

Framework
- Steady-state
- Transient
- Primarily Eulerian (Mesh is fixed)
- Arbitrary Lagrangian-Eulerian (ALE)
- Fluid-structure interaction

Boundary conditions, Loads
- Velocity, pressure BCs
- Body forces

Analysis types

CSM vs. CFD

• Key differentiators

<table>
<thead>
<tr>
<th>Feature</th>
<th>Computational solid mechanics</th>
<th>Computational fluid mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>General equations of motion</td>
<td>Equations of motion reduce to incompressible/compressible Navier-Stokes equations</td>
</tr>
<tr>
<td>Computational Framework</td>
<td>Lagrangian, Arbitrary Lagrangian-Eulerian, Eulerian</td>
<td>Eulerian, Arbitrary Lagrangian-Eulerian</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>Material, geometric and boundary</td>
<td>Fundamentally nonlinear (advective terms), non-Newtonian viscosities, Fluid-structure interaction</td>
</tr>
<tr>
<td>Material properties</td>
<td>Solids: Elasticity, plasticity, etc.</td>
<td>Fluids: Viscosity</td>
</tr>
<tr>
<td>Computational method</td>
<td>Finite element</td>
<td>Finite volume, Finite element, Hybrid</td>
</tr>
<tr>
<td>Feature</td>
<td>Stress concentration, Interpolation order</td>
<td>Boundary layers, Treatment of various terms in N-S equations</td>
</tr>
<tr>
<td>Model sizes</td>
<td>Maximum ~ 2-3 M Routine analysis ~ 0.5 M</td>
<td>Maximum ~ 1000M Routine analysis ~ 0.5-1.5 M</td>
</tr>
<tr>
<td>Equation solution method</td>
<td>Primarily direct, iterative</td>
<td>Primarily iterative</td>
</tr>
</tbody>
</table>
CFD Basics

Fluid Mechanics
- Discipline within the field of applied mechanics concerned with the behavior of fluids

Fluids
- Liquids or gases
- Deform continuously under the application of shear stresses

Computational Fluid Dynamics
- Like structural mechanics, very few fluid mechanics problems can be solved analytically
- Computational (i.e., numerical) method for fluid mechanics

\[t_1 > t_2 > t_3 \]
CFD Basics

- **Viscosity**
 - Fluid property that relates shear stress to the rate of deformation

- **Newtonian/Non-Newtonian Fluids**
 - Newtonian fluids:
 - Shearing stress varies linearly with the rate of shearing strain
 - E.g. air and water
 - Non-Newtonian fluids
 - Distinguished by how viscosity changes with shearing rate
 - E.g. blood or alcohol

CFD Basics

- **Continuum Fluid Mechanics**
 - Inviscid
 - Viscous
 - Laminar
 - Turbulent
 - Reynolds number
 - Incompressible
 - Compressible
 - Internal
 - External
 - Mach number

Introduction to Abaqus/CFD
CFD Basics

- **Inviscid vs. viscous flows**

 Inviscid flows
 - Effect of viscosity is neglected

 Viscous flows
 - Effect of viscosity is included
 - Especially important in flows close to a solid boundary

 Reynolds number
 \[
 Re = \frac{\text{Inertial forces}}{\text{Viscous forces}} = \frac{\rho VL}{\mu}
 \]
 - \(L \): Characteristic length scale of the flow
 - \(V \): Characteristic velocity

 Increasing Reynolds number
 - Viscous effects dominate
 - Stokes flow, \(Re \ll 1 \)
 - Inertial effects dominate

CFD Basics

- **Incompressible vs. compressible flows**

 Incompressible flows
 - Velocity field is divergence free
 - Energy contained in acoustic waves is small relative to the energy transported by advection
 - Example: Flow of liquids are often treated as incompressible

 Mach number
 \[
 Ma = \frac{\text{Flow speed}}{\text{Local speed of sound}} = \frac{V}{c}
 \]
 - For \(Ma < 0.3 \), the variation is < 2 %
 - For \(Ma < 0.45 \), the variation is < 5 %
 - \(Ma \approx 0.3 \) is considered the limit for incompressible flow

 Compressible flows
 - Density variations within the flow are not negligible
 - Example: Flow of gases are often compressible
CFD Basics

- **Laminar vs. turbulent flows**

 - **Laminar flow**
 - Smooth motion in layers (laminae)
 - No gross mixing of flows (slow dispersion due to molecular motion only)

 - **Turbulent flows**
 - Random three dimensional motion
 - Macroscopic mixing
 - Unsteady (mean flow can be steady or unsteady)

 Increasing Reynolds number: Transition to turbulent flow at higher Re (> 200)

 - 1.54
 - 9.6
 - 13
 - 105
 - 150

CFD Basics

- **Internal vs. external flows**

 - **External flows**
 - Fluid flow over external surface of an object

 - **Internal flow**
 - Fluid flow that passes through confined solid boundaries

 Velocity contours
 Pressure contours
 Flow around Obstacles
 Flow inside Engine Manifold
Governing Equations

Fundamental Principles of Mechanics
- Conservation of Mass
- Conservation of Momentum
- First and Second Law of Thermodynamics

Constitutive Assumption for Fluids
1) Newtonian fluid (viscosity is constant)
2) Non-Newtonian fluid

\[
\sigma = -pI + 2\mu \left(D - \frac{1}{3}(\nabla \cdot \mathbf{v})I \right)
\]

\[
D = \frac{1}{2} \left((\nabla \mathbf{v}) + (\nabla \mathbf{v})^T \right)
\]

Rate of deformation tensor

Equation of Continuity
- Navier-Stokes Equation
 1) Generalized - Non-Newtonian fluids
 2) Compressible and incompressible forms

Energy Equation
Governing Equations

- **Continuity Equation**
 \[
 \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0
 \]
 \[
 \nabla \cdot \mathbf{v} = 0 \quad \text{Incompressible flows}
 \]

- **Conservation of momentum**
 \[
 \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \nabla \cdot \mathbf{\sigma} + \rho \mathbf{g}
 \]
 \[
 \mathbf{\sigma} = -\rho \left(\frac{2}{3} \mu (\nabla \cdot \mathbf{v}) \right) \mathbf{I} + 2\mu \mathbf{D}
 \]
 Newtonian fluid
 \[
 \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \nabla p + \mu \nabla^2 \mathbf{v} + \frac{\mu}{3} (\nabla (\nabla \cdot \mathbf{v})) + \rho \mathbf{g}
 \]
 Compressible Navier-Stokes Equation
 \[
 \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}
 \]
 Incompressible Navier-Stokes Equation

- **Conservation of energy**
 \[
 \frac{\partial e}{\partial t} + \mathbf{v} \cdot \nabla e = \mathbf{\sigma} : \mathbf{D} + \rho r - \nabla \cdot \mathbf{q}
 \]
 \[
 \mathbf{q} = -k \nabla \theta \quad \text{Fourier law for heat conduction}
 \]
 \[
 F(p, \rho, \theta) = 0 \quad \text{Equation of state}
 \]
 \[
 e = \epsilon(\theta, \rho) \quad \text{Ideal gas}
 \]
 \[
 p = \rho R \theta
 \]
 \[
 e = c_v \theta
 \]
Governing Equations

- **Some terminology**

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}
\]

Incompressible Navier-Stokes Equation

- **Adective terms**
- **Diffusive terms**

Diffusion (in still flow, \(V = 0 \))

Diffusion and Advection

- Advective terms make Navier-Stokes equations fundamentally nonlinear
 - Except in the special case of creeping flows (Stokes flow), this cannot be neglected
 - Diffusion dominates at low Reynolds number while advection dominates at high Reynolds number

Flow Features

- **Boundary layers**
 - Layer of fluid in the immediate vicinity of a bounding surface
 - Fluid velocity changes from zero at the surface to free stream velocity in this thin layer
 - Can be laminar or turbulent (depends on Re)
 - Affects engineering quantities of interest
 - Drag on bodies, wall shear stresses, pressure drops, heat transfer
- **Flow separation**
 - Occurs when a boundary layer travels far enough against an adverse pressure gradient such that the speed of the boundary layer falls to zero
 - Detached flow in forms of eddies & vortices
 - Increased drag on bodies
 - Delaying the onset of flow separation is a design challenge
Heat Transfer in Fluid Mechanics

Conduction
- Diffusion process; heat transfer through direct contact

Convection
- Associated with fluid motion
- Natural convection – “Hot gas rises”
- Forced convection – Forced fluid motion

Radiation
- Heat transfer through electromagnetic waves

Modeling Natural Convection

Temperature differential causes change in density; lighter fluid rises
Requires compressible N-S equations
Source term proportional to density and gravity
Approximate and model as incompressible flow (Boussinesq approximation)

\[
S = \rho g \\
\beta = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P \\
(\rho - \rho_0)g \approx -\rho_0 \beta (T - T_0)g
\]
Non-dimensional Quantities in CFD

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Physical significance</th>
<th>Area of applicability</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Biot number (Bi) | $\frac{hL}{k_{\text{solid}}}$ | Ratio of internal thermal resistance of solid to fluid thermal resistance | Heat transfer between solid and fluid | Bi << 1: Heat conduction inside the body is much faster than the heat convection away from its surface; use temperature BC at solid walls
Bi >> 1: Need to consider spatial variation of temperature within solid; include conduction in solid |
| Grashof number (Gr) | $\frac{gL^3\beta T}{\nu^2}$ | Ratio of buoyancy to viscous forces | Natural convection flows | Indicates strength of natural convection and also limit for transition to turbulent flows for natural convection |
| Mach number (Ma) | $\frac{V}{c}$ | Ratio of velocity of flow to velocity of sound | Compressible flows | Indicates if the flow is compressible
Ma < 0.3: Incompressible
0.3 < Ma < 0.8 Weakly compressible
Ma > 0.8 Compressible |
Non-dimensional Quantities in CFD

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Physical significance</th>
<th>Area of applicability</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Nusselt number (Nu) | \(\frac{hL}{k_{\text{fluid}}} \) | Ratio of convective heat transfer to conduction in a fluid slab of length \(L \) | Convective heat transfer | • Increased convection and heat removal at higher Nu
• Nu \(\sim \) 1: Laminar flow
• Higher values for turbulent flows |
| Prandtl number (Nu) | \(\frac{\mu Pr}{k} \) | Ratio of molecular momentum and thermal diffusivity | Forced and natural convection | • Pr \(\ll \) 1: heat diffuses quicker than velocity
• Relative thickness of thermal and velocity boundary layers |
| Rayleigh number (Ra) | \(Gr Pr \) | Modified Grashof number | Natural convection | • Higher value indicates vigorous natural convection |
| Reynolds number (Re) | \(\frac{\rho V L}{\mu} \) | Ratio of inertial to viscous forces | Dynamic similarity | • Transition from laminar to turbulent flow
• Dynamic similarity between experiments |
| Strouhal number (Sr) | \(\frac{L f}{V} \) | Ratio of velocity of vibration \(L f \) to the velocity of the fluid | Vortex shedding | • Oscillating flows, vortex shedding |

Initial and Boundary Conditions

- [Initial and Boundary Conditions](#)
Initial and Boundary Conditions

- Governing equations require initial and boundary conditions
- Initial conditions define conditions at start up (required for transient problems)
 - Pressure (only compressible flows)
 - Velocity
 - Temperature
 - Turbulence quantities
- Boundary conditions define conditions at solution domain boundaries
 - Pressure
 - Velocity
 - Temperature
 - Quantities specific to turbulence models
 - Turbulent viscosity
 - Wall-normal distance function

Where do I need boundary conditions?

- **Flow inlet or outlet regions**
 - Fluid enters or leaves the flow solution domain
- **Physical wall (stationary or moving) region**
 - Fluid is constrained to "stick" to an obstruction, "No-Slip, no-penetration"
- **Far field region**
 - Imaginary flow solution domain boundaries
- **Zones where flow is abstracted**
 - Approximating three dimensional flow as two-dimensional
 - Symmetry conditions

Inlet

Outlet

Wall

Free stream

External flow

Internal flow
Solution of Governing Equations

Differential equations
\[
\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla^2 \mathbf{v} + \mathbf{f} = 0
\]

Pressure Poisson’s Equation (PPE)
\[
\nabla \cdot \left(\frac{1}{\rho} \nabla p \right) = \nabla \cdot (\mathbf{f} - \mathbf{v} \cdot \nabla \mathbf{v})
\]

Hybrid finite-element/finite-volume discretization

Spatial discretization
\[
M\mathbf{v} + A(\mathbf{v})\mathbf{v} + K\mathbf{v} + Gp = F
\]
\[
D\mathbf{v} = g
\]
\[
Lp = DM^{-1} \left(\mathbf{F} - Kv - A(\mathbf{v})\mathbf{v} \right) - \mathbf{g}
\]

Introduction to Abaqus/CFD
Solution of Governing Equations

Temporal discretization

Solution quantities

Linear system of equations, iterative linear solvers to find solution

\[\frac{v_{n+1} - v_n}{\Delta t} = (1 - \theta)v_n + \theta v_{n+1} \]

\(\theta = 1 \): Backward Euler
\(\theta = \frac{2}{3} \): Galerkin
\(\theta = 0.5 \): Trapezoid (Crank - Nicolson)

Velocities, Transport quantities (Temperature, turbulence & species transport)

1. Velocity (three components)
2. Pressure
3. Temperature (if thermal effects are included)
4. Transport quantities (turbulence, species concentrations, etc.)

\[Ax = b \]

\[r \leq \delta \quad r = \| b - Ax \| \]

Convergence criterion

Introduction to Abaqus/CFD

Turbulence Modeling
Turbulence Modeling

- Typical Characteristics of Turbulence
 - Three-dimensional: 3-dimensional energy transfer from large to small scales through interaction of vortices
 - Irregularity: Sensitive to initial and boundary conditions
 - Diffusivity: Turbulence enhances mass, momentum and energy transfer
 - Large Reynolds number: High Reynolds number phenomenon
 - Dissipative: Turbulent kinetic energy is dissipative
 - Continuum scale: Smallest scale of turbulence is far larger than molecular length scale
 - Multi-scale: Wide range of scales (of eddies)
 - Flow feature: Property of the flow, not of the fluid

- Turbulent cascading process
 - Turbulence consists of a continuous spectrum of scales ranging from large to small
 - Local swirling motion of eddies of varied sizes (length scales L)
 - Turbulent cascading process: Kinetic energy is transferred from larger eddies to smaller eddies, where it is dissipated as heat through molecular viscosity
 - Resolving various turbulent length scales (L) is key to turbulence modeling
 - Navier-Stokes equations can resolve whole spectrum of turbulence scales but will need a very fine mesh (mesh size ~ length scale resolved)
Turbulence Modeling

• Approaches to Turbulence Modeling

Reynolds Averaged Navier-Stokes (RANS)
- Solve averaged N-S equations
- Models most scales
- Computationally efficient
- Widely used for industrial applications
- Unsteady RANS
 - Examples:
 - Eddy viscosity models
 - Reynolds stress models

Large Eddy Simulation (LES)
- Resolves large scale eddies and models small scale eddies
- Computationally more expensive than RANS approach

Hybrid RANS/LES approach
- RANS approach close to solid boundaries
- LES away from walls (for detached eddies)
- Example: Detached eddy simulation (DES)

Direct Numerical Simulation (DNS)
- N-S equations can resolve all turbulence scales but would require very fine meshes
- Computationally intensive and hence not often used for industrial applications

Increasing computational cost
More turbulence scales resolved

Turbulence Modeling

• Reynolds Averaged Navier-Stokes (RANS) Approach

Introduce Reynold’s decomposition of variables into the flow equations
Perform time averaging
Obtain RANS equations for incompressible flow

\[u_i(x, t) = U_i(x) + u_i'(x, t) \]

Mean velocity
Fluctuating velocity

\[U_i(x) = \lim_{T \to \infty} \frac{1}{T} \int_t^{t+T} u_i(x, t) dt, \]

\[\bar{u}_i'(x, t) = 0 \]

\[\frac{\partial U_i}{\partial x_i} = 0 \]
Turbulence Modeling

- Reynolds Averaged Navier-Stokes (RANS) Approach (cont’d)

Obtain RANS equations for incompressible flow

\[\rho \frac{\partial U_i}{\partial t} + \rho U_j \frac{\partial U_i}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\mu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) - \rho \tau_{ij} \right) \]

New “Stress like” terms arise

Turbulent closure problem - more unknowns (three velocities, pressure and six Reynolds stresses) than equations (three momentum and continuity equation)

Model Reynolds stresses

1. Eddy viscosity models
2. Reynolds stress models

Turbulence Modeling

- Eddy Viscosity Models

 - Model Reynolds stresses from an eddy viscosity and mean strain rate - “Boussinesq Approximation”
 - Isotropic
 - Eddy viscosity is a function of turbulence length and time scales
 - Not constant

Effective turbulent viscosity

\[\tau_{ij} = -\rho \mu \epsilon_j^i = 2 \mu S_{ij} = \frac{2}{3} \rho k \delta_{ij} \]

\[S_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \]

\[2 \rho k = \tau_{ii} = -\rho \mu \epsilon_i^i \]

\[k: \text{Like “normal stress”} \]
Turbulence Modeling

- **Spalart-Allmaras Turbulence Model**
 - One equation turbulence model
 - Differential equation to determine \tilde{v}
 \[\nu_t = \tilde{\nu} (\nu/\tilde{\nu}), \quad f_{v1}(x) := \frac{x^3}{x^3 + C_{v1}}, \quad \chi = \frac{\tilde{\nu}}{\nu} \]
 \[\frac{\partial \tilde{v}}{\partial t} + v \cdot \nabla \tilde{v} = \frac{1}{\sigma} \left(\nabla \cdot (\tilde{v} \nabla \tilde{v}) + c_{b2} \nabla \tilde{v}^2 \right) + c_{b1} S(\tilde{v}) \tilde{v} - c_{w1} f_{w}(\tilde{v}) \left(\frac{\tilde{v}}{d} \right)^2 \]
 \[S(\tilde{v}) = \frac{\tilde{v}^2}{K d^2}, \quad S = \| \nabla \times v \|_2 \]
 - \[f_{v2}(x) := 1 - \frac{x}{1 + x f_{v1}(x)}, \quad f_{v1}(x) := \frac{x^3}{x^3 + C_{v1}} \]
 - \[f_w(g) := g \left(1 + \frac{c_{w3}}{g^6 + c_{w3}} \right)^{\frac{1}{6}}, \quad g(r) := r + c_{w2} (r^6 - r), \quad r(\tilde{v}) = \frac{\tilde{v}}{S K d^2} \]

Constants
- $c_{b1} = 0.1355$
- $c_{b2} = 0.622$
- $c_{v1} = 7.1$
- $\sigma = 2/3$
- $c_{w1} = c_{b1} + \frac{1 + c_{b2}}{\kappa}$
- $c_{w2} = 0.3$
- $c_{w3} = 2$
- $\kappa = 0.41$
- $c_{v2} = 5$

Turbulence Modeling

- **Spalart-Allmaras Turbulence Model**
 - Required boundary conditions for \tilde{v}
 - At walls: $\tilde{v} = 0$
 - Inlet turbulence needs to be specified
 - Initial conditions required for \tilde{v} for transient problems
 - Does not require near-wall treatment
 - Formulation ensures correct near-wall behavior when integrated down to wall
 - Captures accurate boundary layers if near-wall meshes are resolved ($y^+ \approx 3$)
 - Usage:
 - Attached flows with no or mild separation
 - Can not be used with highly rotational flows
 - Primarily developed for external aerodynamics
Turbulence Modeling

• Near-wall treatment in turbulent flows

Why do walls affect turbulent flows?
- No-slip condition at the walls
- Main source of turbulence (large gradients in temperature and velocity field) occur near the wall

Why bother?
- Affects engineering quantities of interest such as:
 - Drag on bodies
 - Wall shear stresses
 - Pressure drops
 - Heat transfer from walls

Near-wall turbulent flow structure
- **Law of the wall**
 1) Viscous sublayer
 2) Log layer
 3) Fully turbulent core

Typical velocity profile for a turbulent boundary layer – “Law of the Wall”

Turbulence models should capture the near wall behavior for accurate wall modeling

Turbulence Modeling

• Two approaches for capturing near-wall behavior

Wall function approach
- Uses logarithmic law-of-the-wall at the walls as boundary conditions
- Near-wall flow is not solved
- Alleviates the need for very fine near-wall mesh resolution
- Computationally efficient
- Some turbulence models require wall functions
 - k-ε RNG model is not valid in viscous sublayer
- Other turbulence models do not require wall function (however, wall functions can be used when near-wall mesh resolution is coarse)
 - Spalart-Allmaras, k-ω SST

Low Reynolds number approach
- Requires fine near-wall mesh to resolve the flow
- Computationally expensive when accurately resolving near-wall flow
- Turbulence models appropriately capture near-wall behavior. For example:
 - Spalart-Allmaras and k-ω SST models ensure correct near-wall behavior when integrated down to wall while k-ε RNG model does not
References

- **Fluid Mechanics**
 - Introduction to Fluid Mechanics
 - Robert W. Fox & Alan T. McDonald
- **Turbulence Modeling**
 - Turbulence Modeling for CFD
 - David C. Wilcox
 - Turbulent Flows
 - Stephen B. Pope
- **Continuum Mechanics**
 - Introduction to the Mechanics of a Continuous Medium
 - Lawrence E. Malvern
Introduction

Lecture 2

Overview

• SIMULIA
• Multiphysics
• Abaqus/CFD
• Fluid-Structure Interaction (FSI)
• Native FSI using Abaqus
• Target Applications
• System and Licensing Requirements
• Execution Procedure
SIMULIA is the Dassault Systèmes brand that delivers a scalable portfolio of Realistic Simulation solutions.

- The Abaqus product suite for **Unified FEA**
- **Multiphysics** solutions for insight into challenging engineering problems
- **Lifecycle management** solutions for managing simulation data, processes, and intellectual property
Multiphysics

- Multiphysics involves the inclusion of multiple physical representations to capture the diversity of behavior present in real-world problems
 - Multiphysics solutions offered by SIMULIA broadly falls into three different areas

Abaqus Multiphysics
- Native multiphysics capabilities available in Abaqus
- Broad range of physics

Extended Multiphysics
- Extended multiphysics capability
- CEL in Abaqus/Explicit
- Abaqus/CFD

Multiphysics Coupling
- Open scalable platform for partners and customers
- Co-simulation engine
- Native FSI capability
- Coupling with third-party CFD codes

- Multiphysics simulation requirements spans every industry and nearly every real application
- Multiphysics simulation is often required for Realistic Simulation

Introduction to Abaqus/CFD
Abaqus Multiphysics

- Electrical
- Thermal
- Acoustics
- Piezoelectrical
- Fluid flow
- Pore pressure

Extended Multiphysics

- Blast loaded structure
- Tire Hydroplaning
- Aortic Aneurysm
- Automotive Brake Valve
- Airbag inflation
- Tank sloshing
- Flow in Arteries
- Electronic Cooling

Coupled Eulerian-Lagrangian (CEL) technology

Abaqus/CFD
Multiphysics Coupling

Independent code coupling interface
- Enabled through MpCCI from Fraunhofer SCAI
- Allows coupling Abaqus with all codes supported by MpCCI

SIMULIA Direct Coupling
- Enables Abaqus to couple directly to 3rd party codes
- Currently in maintenance mode

Co-simulation Engine (CSE)
- SIMULIA’s next generation open communications platform that seamlessly couples computational physics processes in a multiphysics simulation
- Physics-based conservative mapping technology
- Superior coupling technology

<table>
<thead>
<tr>
<th>MpCCI</th>
<th>Abaqus</th>
<th>Star-CD</th>
<th>Fluent</th>
<th>Other CFD codes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abaqus</th>
<th>AcuSolve</th>
<th>Star-CD</th>
<th>Flowvision</th>
<th>Other CFD codes</th>
</tr>
</thead>
</table>

SIMULIA Co-simulation Engine
- Abaqus/Standard
- Abaqus/Explicit
- Abaqus/CFD
- Star-CCM+
- Other CFD codes

Multiphysics Coupling

- **FSI using Abaqus in 6.10:**
 - Abaqus/Standard, Abaqus/Explicit 6.10 → CSE → Abaqus/CFD 6.10
 - *This is covered in the current training class*

- **FSI using Abaqus and third-party CFD codes**
 - Product support with 6.10:
 - Abaqus 6.10 ↔ MpCCI 4 ↔ Fluent 12
 - Abaqus 6.10 ↔ Star-CCM+ 5

- **SIMULIA Direct Coupling Interface (DCI)**
 - DCI is in maintenance mode
 - Coupling with Flowvision and AcuSolve is supported by respective third parties
 - More information is available in training class “FSI Simulation Using Abaqus and Third-party CFD Codes”
Abaqus/CFD

- Abaqus/CFD is the computational fluid dynamics (CFD) analysis capability offered in the Abaqus product suite to perform fluids analysis
 - Scalable CFD solution in an integrated FEA-CFD multiphysics framework
 - Based on hybrid finite-volume and finite-element method
 - Incompressible, pressure-based flow solver:
 - Laminar & turbulent flows
Abaqus/CFD

- Incompressible, pressure-based flow solver:
 - Transient (time-accurate) method
 - 2nd-order accurate projection method
 - Steady-state using time marching and backward Euler method
 - 2nd-order accurate least squares gradient estimation
 - Unsteady RANS approach (URANS) for turbulent flows
 - Energy equation for thermal analysis
 - Buoyancy driven flows (natural convection)
 - Using Boussinesq approximation

Abaqus/CFD

- Turbulence models
 - Spalart-Allmaras
 - Both steady-state and transient, i.e., URANS
 - ILES (Implicit Large-Eddy Simulation)
 - Transient by nature
- Iterative solvers for momentum, pressure and transport equations
 - Krylov solvers for transport equations
 - Momentum, turbulence, energy, etc.
 - Algebraic Multigrid (AMG) preconditioned Krylov solvers for pressure-Poisson equations
- Fully scalable and parallel
Abaqus/CFD

L2.15

Introduction to Abaqus/CFD

- **Other features**
 - Fluid material properties
 - Newtonian fluids only
 - CFD-specific diagnostics and output quantities
 - Arbitrary Lagrangian-Eulerian (ALE) capability for moving deforming mesh problems
 - Prescribed boundary motion, Fluid-structure interaction
 - “hyper-foam” model, total Lagrangian formulation

Abaqus/CFD

L2.16

Introduction to Abaqus/CFD

- **Abaqus/CAE support**
 - Concept of “model type” in Abaqus/CAE
 - Model type “CFD” enables CFD model creation
 - Support for CFD-specific attributes
 - Step definition
 - Initial conditions
 - Boundary conditions and loads
 - Job submission, monitoring etc.
Abaqus/CFD

- Abaqus/Viewer support for Abaqus/CFD
 - CFD output database
 - Isosurfaces
 - Multiple cut-planes
 - Vector plots
 - Multiple cut-planes

Fluid-Structure Interaction
What is Fluid-Structure Interaction or FSI?

• FSI represents a class of multiphysics problems where fluid flow affects compliant structures, which in turn affect the fluid flow
 • Partitioned solution approach is widely used
 • One of more fields may be of interest

FSI Coupling Spectrum

* Graphic refers to complexity of interface coupling, not to complexity of the solution in the solid or fluid domain.
Current FSI Technology Spectrum

Increasing solution complexity

<table>
<thead>
<tr>
<th>6-DOF solver</th>
<th>Simple FSI</th>
<th>Staggered Approach (Explicit/Implicit)</th>
<th>Specialized techniques</th>
<th>Monolithic approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure represented in the fluids code as a 6 DOF entity</td>
<td>Compliance matrix/eigen value approach to solving the structural problem inside a fluids code</td>
<td>Structure and fluid equations solved separately with code coupling and mapping at the interface</td>
<td>1:SPH: Meshless method 2:Immersed Boundary Techniques 3:CEL</td>
<td>Single set of equations for the fluid and structural domains</td>
</tr>
<tr>
<td>Suitable for rigid body motions in a fluid.</td>
<td>Suitable for linear structural problems</td>
<td>Suited for weak to moderately strong coupling physics problems. Implicit coupling well suited for tackling unstable FSI problems</td>
<td>Suitable for problems where structural modeling is too complex or deformations are significant</td>
<td>Suited for all coupling physics problems</td>
</tr>
<tr>
<td>Examples: IC engines, rigid valve movement</td>
<td>Examples: Sloshing, vortex-induced vibrations</td>
<td>Examples: Pulsatile blood flow, dispensing</td>
<td>Examples: Tire hydroplaning</td>
<td>Examples: All</td>
</tr>
</tbody>
</table>

Current FSI Technology Spectrum

- **Linear Structures Approach**
 - Assumption 1: Linear solid/structural deformation
 - Assumption 2: Eigenmodes sufficient to represent the dynamic behavior
 - Projection of dynamic system onto the eigenspace

- **Partitioned Approach**
 - Structural and fluid equations solved independently
 - Interface loads and boundary conditions exchanged after a converged increment

- **Specialized Techniques**
 - Coupled Eulerian-Lagrangian

\[
Ma + Cv + Kd = F
\]

\[
(K - \lambda_i M)S_i = 0 \quad i = 1, \ldots, n_{\text{modes}}
\]

\[
m\ddot{y} + c\dot{y} + ky = f
\]

Abaqus native FSI capability is based on a partitioned approach

Introduction to Abaqus/CFD
Native FSI using Abaqus

- Abaqus/CFD couples with Abaqus/Standard and Abaqus/Explicit through the co-simulation engine
 - The co-simulation engine operates in the background (no user intervention required)
 - Physics-based conservative mapping on the FSI interface

- Significantly expands the set of FSI applications that SIMULIA can address independently
 - Fluid-structure interaction
 - Conjugate heat-transfer applications

- Based on partitioned approach
 - Explicit coupling between codes
 - Conditionally stable

Fluid solver
\[\vec{F}_f = \mathcal{P} \vec{u}_f \]
\[\vec{u}_f = \begin{bmatrix} p & \vec{x} & \vec{u}_s & \vec{u}_f & \vec{r}_f \end{bmatrix}^T \]

Structural solver
\[\vec{F}_s = \mathcal{M} \vec{u}_s + \mathcal{C} \frac{\partial \vec{u}_s}{\partial t} \]
\[\vec{u}_s = \begin{bmatrix} \vec{x} & \vec{u}_s & \vec{s}_s \end{bmatrix}^T \]
\[\mathcal{A} \vec{f} = \mathcal{C} \vec{u}_s \]

Abaqus/CFD
Abaqus/Standard
Abaqus/Explicit

Introduction to Abaqus/CFD
Native FSI using Abaqus

Supported though Abaqus/CAE
- Support for creating “FSI” interactions in
 - Structural analysis (in Abaqus/Standard or Abaqus/Explicit)
 - CFD analysis (in Abaqus/CFD)
- FSI jobs launched through co-execution framework

Native FSI using Abaqus

• Supported though Abaqus/CAE
• Support for creating “FSI” interactions in
 • Structural analysis (in Abaqus/Standard or Abaqus/Explicit)
 • CFD analysis (in Abaqus/CFD)
• FSI jobs launched through co-execution framework
Native FSI using Abaqus

- The native FSI capability in Abaqus addresses weak to moderately coupled FSI problems
 - For problems where “added-mass” effects are important, this approach may lead to numerical instabilities
 - Occurs when fluid density is close to the density of the structure
 - Examples:
 - In interactions with water, added-mass effect is important
 - In interactions with air, added-mass effect can often be ignored
 - Not a limitation of Abaqus but a common limitation of explicit FSI coupling based on a partitioned approach
 - Conjugate heat-transfer problems are also conditionally stable but the stability envelope is much larger
 - The stability limit is encountered in rare circumstances

Target Applications
Target Applications

Application attributes

<table>
<thead>
<tr>
<th>Time-domain response</th>
<th>Distinct fluid and structure domains</th>
<th>Geometric consistency of models</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSI is transient</td>
<td>Steady-state response for quasi-static problems</td>
<td>Interaction between the domains is through user-identified surfaces</td>
</tr>
<tr>
<td></td>
<td>Co-located models</td>
<td>Consistent geometric idealizations of fluid and structure</td>
</tr>
<tr>
<td></td>
<td>Consistent units</td>
<td></td>
</tr>
</tbody>
</table>

Automotive
- Engine, exhaust manifold, cooling jackets
- Hydraulic engine mounts
- Disc brake system
- ABS, shock absorbers

Power/gas
- Pipelines, risers
- Heat exchangers (nuclear power)

Electronics
- Cooling of electronic components
- Manufacturing of integrated circuits

Industrials
- Flow limiters, seals

Medical
- Heart valves
- Blood flow
Target Applications

- Applications not targeted
 - Vibroacoustics
 - More effectively treated by frequency domain methods
 - Structures modeled with rod, beam, truss, cable elements
 - Inconsistent geometry idealizations
 - Injection molding, casting, superplastic forming
 - Indistinct or changing fluid/structure interface
 - Rupture, penetration, fragmentation
 - Variable fluid region topology

System and Licensing Requirements
System and Licensing Requirements

- **Abaqus/CFD requires MPI installation**
 - Even for a single-cpu run
 - MPI configuration:
 - Windows / x86-32 - HPMPI
 - Windows / x86-64 - MSMPI
 - Linux / x86-64 - HPMPI
- **Platforms supported:**
 - Supported on all 6.10-supported platforms
 - Windows / x86-32
 - Windows / x86-64
 - Linux / x86-64
- **More information:**
 - http://www.simulia.com/support/sup_systems_info.html

System and Licensing Requirements

- **Running Abaqus/CFD requires a “CFD” license feature in the license file**
- **Additionally, running FSI using Abaqus/CFD requires a co-simulation engine license feature in the license file**
Execution Procedure

• From within Abaqus/CAE
 • Abaqus/CFD jobs can be run from within Abaqus/CAE as regular Abaqus jobs
 • FSI jobs can be launched from within Abaqus/CAE as a co-execution job

• From the command line
 • Abaqus/CFD jobs
 \[
 \text{abaqus \ -job <job name> \ -cpus <# of cpus>}
 \]
 • FSI jobs
 \[
 \text{abaqus \ -job <job 1 name> \ -listenerPort 11111 \ -remoteConnections <hostname>:22222}
 \]
 \[
 \text{abaqus \ -job <job 2 name> \ -listenerPort 22222 \ -remoteConnections <hostname>:11111}
 \]
 • So if you were running Job-1 on a machine named blue and Job-2 on machine named red, the commands would be:
 \[
 \text{abaqus \ -job Job-1.inp \ -listenerPort 11111 \ -remoteConnections red:22222}
 \]
 \[
 \text{abaqus \ -job Job-2.inp \ -listenerPort 22222 \ -remoteConnections blue:11111}
 \]
Notes
Overview

- CFD Simulation Workflow
- Setting up CFD Analyses
- Case Study 1: Flow around a Rigid Circular Cylinder
- Case Study 2: Flow around an Oscillating Rigid Circular Cylinder
- Modeling Heat Transfer
- Modeling Turbulence
CFD Simulation Workflow

- CAD Geometry
 - Abstraction and clean up
 - Volume creation to represent flow volume

- CFD Meshing
 - Surface meshing followed by volume mesh
 - Mesh topology
 - Tetrahedral, Hexahedral, Wedges, Pyramids, Mixed boundary layer mesh
 - Volume meshing of flow volume

- CFD Solver
 - Steady or transient
 - Laminar or turbulent
 - Numerical scheme
 - Initial & boundary conditions

- Postprocess
 - Contours, vector plots, streamlines

Introduction to Abaqus/CFD
CFD Simulation Workflow

- CFD Simulation Workflow in Abaqus/CAE

Part module:
Create a part representing the flow domain

Property module:
Define fluid properties; create and assign fluid section

Assembly module:
Instance and position the parts

Load module:
Apply boundary conditions, body forces, fluid reference pressure, etc.

Interaction module:
Define interactions for FSI problems

Step module:
Define fluid analysis step, solver controls, turbulence models, etc.

Mesh module:
Create CFD mesh

Job module:
Create and submit CFD job

Visualization module:
Postprocess results

Setting up CFD Analyses
Setting up CFD Analyses

- **Case study introduction**
 1. Flow around a rigid circular cylinder
 2. Flow around an oscillating rigid circular cylinder
 3. Flow around a spring-loaded rigid circular cylinder *(Covered in Lecture 6)*

<table>
<thead>
<tr>
<th>Problem description</th>
<th>Flow domain</th>
<th>How do I model it?</th>
<th>Cylinder motion</th>
</tr>
</thead>
</table>
| | Around the cylinder | 1) Model fluid flow
2) Mesh is fixed | None |
| Flow around a rigid circular cylinder | Around the cylinder but domain changes due to cylinder’s oscillation | 1) Model fluid flow
2) Allow mesh at cylinder surface to accommodate displacements (ALE) | Modeled in Abaqus/CFD as a boundary condition |
| Flow around an oscillating rigid circular cylinder | Around the cylinder but domain changes due to cylinder’s oscillation | 1) Model fluid flow
2) Allow mesh at cylinder surface to accommodate displacements (ALE)
3) Model the cylinder and the spring in structural solver (co-simulation) | Determined by structural analysis (two separate models) |
| Flow around a spring-loaded rigid circular cylinder | |

Case Study 1: Flow around a Rigid Circular Cylinder

- Flow domain: Around the cylinder
- How do I model it?
 1. Model fluid flow
 2. Mesh is fixed
- Cylinder motion: None
Introduction

- Flow around a rigid circular cylinder is often used as a CFD benchmark case
 - Characteristic length scale: \(D \) (cylinder diameter)
 - Model the flow as 3-dimensional but with one element through the thickness and symmetry boundary conditions on the front and back faces to enforce 2-dimensional conditions

\[
Re = \frac{\rho V D}{\mu}
\]

Reveals interesting flow features depending on the Reynolds number

1. Steady and symmetric flow; no separation
2. \(5 < Re < 40 \) - Steady and symmetric flow; symmetric vortices
3. \(40 < Re < 200 \) - Transition to turbulence in the wake and boundary layers
4. \(Re > 200 \) - Laminar vortex sheet (Von Karmann vortex street)

Defining the CFD Model

1. Create a “CFD” model in Abaqus/CAE

- CFD-specific model attributes are only accessible for Abaqus/CAE models of type “CFD”
- The model type, once set, cannot be changed
 - Parts, instances, material properties etc. can be copied between “Standard & Explicit” and “CFD” model types
Defining the CFD Model

2. Define a part representing the flow domain

- Only 3-dimensional parts can be modeled.
 - Use a 3D sector for axisymmetric models
 - Use a 3D part with one element through the thickness for 2-dimensional models
- Orphan CFD meshes can be imported
 - Tetrahedral and hexahedral elements only
- All Abaqus/CAE features for geometry creation are accessible

Far field boundaries are chosen such that flow is unaffected by the presence of the cylinder at these boundaries.

"2-dimensional"

3. Generate the mesh

- Hexahedral (FC3D8) and tetrahedral (FC3D4) element types are available
 - No mixed meshes are allowed
- Proper modeling of the boundary layer requires a fine mesh near the cylinder surface to resolve the velocity gradient
 - Fluid velocity is zero at the cylinder surface (no-slip, no-penetration condition)
 - Typically, the CFD mesh is refined at no-slip walls and coarsens as we move away from walls
Defining the CFD Model

4. Define fluid material properties

- Newtonian fluid
 - Density: 1000 kg/m3
 - Viscosity: 0.1 Pa.sec
- Properties are chosen to set the flow Reynolds number at 100 based on cylinder diameter
- Temperature or field dependent quantities are not supported

5. Create and assign a fluid section and instance the part

- Section category “Fluid” is the only choice available when the CFD model type is chosen
- Elements without a section assignment will cause a processing error
- Instance the part (or orphan mesh) and position it in the desired geometric location
Defining the CFD Model

6. Define an incompressible flow analysis

- Transient analysis attributes
 - Time period
 - Energy equation (off by default)
 - Time incrementation (automatic or fixed)
 - Solver controls
 - Laminar or turbulent flows

Enable heat transfer

Analysis time period

Defining the CFD Model

6. Define an incompressible flow analysis (cont'd)

Time integration accuracy
- 2nd order accuracy for trapezoid scheme

CFL limit: Courant-Fredrichs-Levy (CFL) condition
- Arises due to the explicit treatment of advective terms in the Navier-Stokes equations
Defining the CFD Model

6. Define an incompressible flow analysis (cont’d)

Solver controls

- Primary solution quantities
 - Velocity components
 - Pressure
- Convergence and diagnostic output for each of the equations is not written by default, but they can be toggled on
- Many solver choices are available for the Pressure Poisson’s Equation
 - Use preset levels (default 2)

Defining the CFD Model

6. Define an incompressible flow analysis (cont’d)

- Laminar or turbulent flow
 - Laminar flow (default)
 - Choice of turbulence models
Defining the CFD Model

7. Request output variables

- Flow field output variables are available at nodes

8. Define boundary conditions

- One element in the thickness direction
- Symmetry boundary conditions on faces to enforce 2-dimensional conditions
- Reynolds number = 100

- Fluid boundary conditions are applied on surfaces
Defining the CFD Model

8. Define boundary conditions (cont’d)

Flow inlet

Name: inlet
Type: Fluid inlet/outlet
Step: FlowStep (Flow)
Region: Domain-1 inlet

- **Momentum**
 - Specify: Pressure, Velocity
 - \(P V1 = 0.1 \)
 - \(P V2 = 0 \)
 - \(P V3 = 0 \)

- **Amplitude** (Instantaneous)

Flow outlet

Name: outlet
Type: Fluid inlet/outlet
Step: FlowStep (Flow)
Region: Domain-1 outlet

- **Momentum**
 - Specify: Pressure, Velocity

Wall condition

Name: wall
Type: Fluid wall condition
Step: FlowStep (Flow)
Region: Domain-1 wall

- **Velocity**
 - All velocity components are set to zero.

Far field velocities

Name: farfield
Type: Fluid inlet/outlet
Step: FlowStep (Flow)
Region: Domain-1 farfield

- **Momentum**
 - Specify: Pressure, Velocity
 - \(P V1 = 0.1 \)
 - \(P V2 = 0 \)
 - \(P V3 = 0 \)

Symmetry at front and back faces

Name: symm
Type: Fluid inlet/outlet
Step: FlowStep (Flow)
Region: Domain-1 symm

- **Momentum**
 - Specify: Pressure, Velocity
 - \(P V1 = 0 \)
 - \(P V2 = 0 \)
 - \(P V3 = 0 \)

Introduction to Abaqus/CFD
Introduction to Abaqus/CFD

L3.23

CFD Analysis Execution

CFD analysis job

Job execution options
- Input file writing
- Analysis data check
- Job submission
- Job monitoring
- Accessing output database (ODB)
- Job termination

Input files are not supported
(You can write input files and use them for job submission; however, you must use the input file generated by Abaqus/CAE)

L3.24

Monitoring the Solution

Divergence (RMS)
- Measure of mass balance
- Monitor divergence (RMS) to gauge solution convergence
- Divergence (RMS) < 1e−3
- High values often indicate incorrect problem set up
- Mesh dependent (refine mesh if divergence is too high)
- Volume error = Div*dt
Introduction to Abaqus/CFD

Monitoring the Solution

Analysis output files

- Log (.log) file
- Status (.sta) file
- Output database (.odb) file

Log (.log) file (truncated view)

TIMING SUMMARY

<table>
<thead>
<tr>
<th>open for read</th>
<th>0.00375</th>
</tr>
</thead>
<tbody>
<tr>
<td>readHeader</td>
<td>0</td>
</tr>
<tr>
<td>registerData</td>
<td>0</td>
</tr>
<tr>
<td>readConnectly</td>
<td>0.015625</td>
</tr>
</tbody>
</table>

MESH STATISTICS

Problem dimension	3
Number of nodes	11448
Number of elements	5632

MATERIAL MODELS

Number of input materials	1
Material ID	0
Mass Density	1000
Specific Heat at constant pressure	0

CONTROL OPTIONS

Deformable mesh options

DIRICHLET BOUNDARY CONDITIONS

| Number of Dirichlet BC's | 11 |

INITIAL DIVERGENCE SUMMARY

| Initial divergence | 4.8762e-07 |
| Net volumetric flux balance | 8.0495e-11 |

MEMORY USAGE

| Total Memory Used (MB) | 2.1932e+01 |

1. All mesh statistics, solver options, boundary conditions and timing summaries are written in the log file.
2. Time increments and maximum and minimum velocity components (and temperatures) are output in log file.
3. Solver convergence & diagnostics are not printed by default but they can be turned on for each individual equation.

Postprocessing the Results

Abaqus/Viewer – Tips for postprocessing CFD output databases

1. Turn off mesh display
2. Use continuous contour intervals
3. Fast view manipulation (for large CFD models)
Postprocessing the Results

Contour plots & animations

- Velocity contour
- Pressure contour
- Vorticity animation

Iso-surfaces and line plots

- Iso-surfaces, pressure
- Line contour, pressure

Discrete intervals (preset or user-defined)
Postprocessing the Results

Path plots

1. Define a path

 ![Create Path Window](image)

 - **Name**: Circular path
 - **Type**: Circular
 - **Path Data**:
 - Circle Definition
 - Radius
 - Number of segments
 - Start angle
 - End angle

2. Create a path plot

 ![Create X-Y Data Window](image)

 - **Source**: D3D, D2D, output file
 - **Path**: Create a path

Case Study 2: Flow around an Oscillating Rigid Circular Cylinder
Introduction

• Flow around an oscillating rigid circular cylinder
 • Flow domain is still around the cylinder but the domain changes due to cylinder’s oscillation
 • Flow in modeled in Eulerian framework
 • Mesh is fixed while the material flows through it
 • Arbitrary Lagrangian-Eulerian (ALE) capability is required within CFD to model fluid flow when the boundary moves due to prescribed motion (boundary condition) or interaction (fluid-structure interaction)
 • “Deform” the mesh
 • Mesh motion requires additional boundary conditions

\[U_{cylinder} = A_0 \sin \left(\frac{2\pi t}{T} \right) \]
\[V_{cylinder} = \frac{2\pi A_0}{T} \cos \left(\frac{2\pi t}{T} \right) \]

V_{inlet} = 0.1 \text{ m/sec}
D = 0.1 \text{ m}
A_o = 0.05 \text{ m}
T = 2 \text{ sec}

Defining the CFD Model

1. Copy CFD model
 • Use the same mesh, fluid properties and analysis attributes
 • Only require additional
 • Boundary conditions
 • Output requests

2. Define boundary conditions
 Wall (no-slip, no-penetration)
 \[V_x = 0 \]
 \[V_y = V_{cylinder} \]
 \[V_z = 0 \]

 Flow inlet
 \[V_x = 0.1 \]
 \[V_y = 0 \]
 \[V_z = 0 \]

 Far field
 \[V_x = 0 \]
 \[V_y = 0 \]
 \[V_z = 0 \]

 Symmetry
 \[V_z = 0 \]
Defining the CFD Model

2. Define boundary conditions (cont’d)

Wall condition

- Use wall boundary condition with shear condition to specify wall velocity

Defining periodic amplitude

Boundary conditions for mesh motion

- Mesh motion boundary conditions are applied on nodes
2. Define boundary conditions (cont’d)

Boundary conditions for mesh motion

At wall (cylinder surface)

- Fixed mesh
- Symmetry

3. Output

Displacement output, U, refers to mesh displacement
Results

Pressure

Velocity

Mesh
displacement

Setting up CFD Analyses – Summary

1. Do not specify these in the CFD model
2. Dictated by structural motion/deformation and FSI interaction

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>On</th>
<th>Flow around a cylinder</th>
<th>Flow around an oscillating cylinder</th>
<th>Flow around a spring loaded cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall (Cylinder surface)</td>
<td>Fluid</td>
<td>No-slip, no-penetration $V_{\text{fluid}} = 0$</td>
<td>$V_{\text{fluid}} = \text{Velocity of the cylinder surface}$</td>
<td>No-slip, no-penetration $V_{\text{fluid}} = \text{Velocity of the cylinder surface}$</td>
</tr>
<tr>
<td>Wall (Cylinder surface)</td>
<td>Mesh</td>
<td>None required</td>
<td>$U_{\text{mesh}} = \text{Displacement of the cylinder surface}$</td>
<td>$U_{\text{mesh}} = \text{Displacement of the cylinder surface}$</td>
</tr>
<tr>
<td>Inlet, outlet, top and bottom</td>
<td>Mesh</td>
<td>None required</td>
<td>$U_{\text{mesh}} = 0$</td>
<td>$U_{\text{mesh}} = 0$</td>
</tr>
</tbody>
</table>

Covered in Lecture 6
Modeling Heat Transfer

Introduction

- Flow around an oscillating rigid circular cylinder
 - Cylinder surface is now at an elevated temperature while the incoming flow is cooler

\[U_{cylinder} = A_o \sin \left(\frac{2\pi t}{T_p} \right) \]
\[V_{cylinder} = \frac{2\pi A_o}{T_p} \cos \left(\frac{2\pi t}{T_p} \right) \]

- Inflow \(\theta = 313 \text{ K} \)
- Outflow \(\theta = 283 \text{ K} \)

- What do I need to model heat transfer?

Fluid thermal properties
- Specific heat
- Thermal conductivity

Enable heat transfer
- Linear solver for transport equation

Define thermal boundary conditions and initial conditions
- Temperature at boundaries
- Initial temperature

Relevant output quantities
- Temperature

\(\theta_{in} = 283 \text{ K} \)
\(V_{inlet} = 0.1 \text{ m/sec} \)
\(D = 0.1 \text{ m} \)
\(A_o = 0.05 \text{ m} \)
\(T_p = 2 \text{ sec} \)
\(\theta_{initial} = 283 \text{ K} \)
Defining the CFD Model

1. Define thermal properties

- Define thermal properties
- Thermal Conductivity
- Specific heat at constant pressure
 - c_p is required for incompressible flow analysis
 - Alternatively, define c_v and universal gas constant R

2. Activate heat transfer

- Activating energy equation enables heat transfer in the flow
 - Requires transport equation solver for temperature
 - Solver options are controlled through transport equation solver controls
Defining the CFD Model

3. Define boundary conditions

- Additional boundary conditions for temperature
 - Flow inlet
 - Cylinder surface

Define inlet temperature

Define cylinder surface temperature

Defining the CFD Model

4. Define initial conditions

- Solution of a transient flow problem requires initial conditions
 - Zero initial velocity is assumed unless non-zero initial velocities are specified
 - Including thermal effects, however, requires specification of initial temperature

\[T_{\text{initial}} = 283 \text{ K} \]
Defining the CFD Model

5. Output requests

Results

Temperature contours

Temperature path plot (Nodes behind the cylinder)

Evolution of Temperature iso-surfaces
Introduction

- Many CFD problems are laminar, and do not require the use of a turbulence model
 - For problems that are truly laminar, use of a turbulence model may yield incorrect results that are too dissipative
- Before activating a turbulence model, check the Reynolds number for the flow
 - A very large Reynolds number typically indicates the need for a turbulence model
 - The transition Reynolds number depends on the flow itself, for example:
 - For pipe flows: transition Re ~2300
 - For flow around a rigid circular cylinder: transition Re ~200
- If you are unsure, try this test:
 1. Run the simulation without a turbulence model activated
 2. Plot kinetic energy and/or the time-history of several flow variables
 3. If there are random oscillations in the results, rerun the simulation with the turbulence model activated to improve the accuracy of the solution
Introduction

- Consider the case of flow around an oscillating rigid circular cylinder that is maintained at an elevated temperature
 - But the Reynolds number is now 1000 → Turbulent flow regime

\[U_{cylinder} = A_o \sin \left(\frac{2\pi t}{T_p} \right) \]
\[V_{cylinder} = \frac{2\pi A_o}{T_p} \cos \left(\frac{2\pi t}{T_p} \right) \]

\[\theta = 313 \text{ K} \]
\[\theta = 283 \text{ K} \]

- What do I need to model turbulent flow?

Defining the CFD Model

1. Activate turbulence model

- Turbulence model parameters are characteristic of turbulence models
- Turbulence variables that are solved for depend on particular turbulence model chosen
 - Requires transport equation solver for turbulence variables
 - Solver options are controlled through transport equation solver controls
Defining the CFD Model

2. Boundary conditions

Boundary conditions for turbulence models
- Spalart-Allmaras turbulence model requires specification of modified turbulent kinematic viscosity $\bar{\nu}$
- Additionally, distance from walls needs to be evaluated

\downarrow Automatically set by Abaqus/CAE at surfaces where wall condition is applied

At walls:
$\bar{\nu} = 0$
$d = 0$

At inlet:
Inlet turbulence (ν_t)

\downarrow Inlet turbulence specification methods

$v = \mu / \rho$...kinematic viscosity
1. $\nu_t \approx (3-5)\nu$
2. $\nu_t = \sqrt{3/2}u_t/l$

I : Turbulence intensity
l : Turbulence length scale
u_t : Reference velocity

3. Initial conditions

Initial conditions are required for turbulence variables
- The Spalart-Allmaras turbulence model requires specification of the initial eddy viscosity
- It is typically specified as being equal to the inlet turbulence
Defining the CFD Model

4. Output requests

Distance function output – Distance from walls

Turbulent kinematic viscosity \(\nu_t \)

Results
Notes
Notes
Overview

- Material Properties
- Incompressible Flow Analysis Procedure
- Solution Algorithm
- Linear Equation Solvers
- Pressure Equation Solvers
- Momentum Equation Solvers
- Equation Solver Output
Material Properties

Laws of physics + Material properties (constitutive law for fluids) = Fluid physical response

Material properties in fluids analyses

- Density
- Viscosity
- Thermal properties
 - Specific heat, Gas constant
 - Thermal conductivity
 - Thermal expansion coefficient
Material Properties

• Creating fluid materials in Abaqus/CAE

Introduction to Abaqus/CFD

Material Properties

• Fluid density
 • Required for transient Navier-Stokes computations
 • Constant for incompressible flows
Material Properties

Fluid viscosity
- Relates fluid shear stress to rate of strain (velocity gradient)
- Only constant viscosity is supported
 - No support for temperature-dependant or non-Newtonian viscosities
- Must be specified for *viscous* flows
- Can also model inviscid flows (zero viscosity)
 - Incompressible Euler equations
 - Viscous effect are ignored
 - High Reynolds number flows away from solid walls
 - Only no-penetration boundary condition is valid at walls
 - No-slip boundary condition is no longer valid at walls

Specific heat and gas constant
- Specific heat is required for transient Navier-Stokes computations with the energy equation

At constant pressure, \(c_p \)
- Required for incompressible flow
- Alternatively, specify \(c_v \) and the gas constant, \(R \)

At constant volume, \(c_v \)
- Required for compressible flow

\[
c_p - c_v = R
\]
Material Properties

• Thermal conductivity
 • Required when heat transfer is modeled
 • i.e., when the energy equation is activated
 • Only constant and isotropic thermal conductivity is supported by Abaqus/CFD

Material Properties

• Thermal expansion coefficient
 • Required for natural convection flows
 • Requires compressible N-S equations
 • **Approximate** and model as incompressible flow (Boussinesq approximation)
 • Linearize the source term and relate change in density to change in temperature

\[S = \rho g \]
\[\beta = -\left(\frac{1}{\rho} \frac{\partial \rho}{\partial T} \right)_p \]
\[(\rho - \rho_0)g \approx -\rho_0 \beta(T - T_0)g \]
Isotropic thermal expansion coefficient only
Incompressible Flow Analysis Procedure

- The FLOW procedure:
 - Creates an incompressible fluid analysis
 - Single or multi-step analysis
 - Laminar \(\rightarrow\) Turbulent flow
 - Low Reynolds number flow \(\rightarrow\) High Reynolds number flow
 - Specify:
 - Analysis time
 - Activate energy equation (for modeling heat transfer)
 - Time incrementation
 - Solver settings for momentum, pressure and transport equations
 - Turbulence models
Incompressible Flow Analysis Procedure

Basic information

- For analyses reaching steady-state, the time period needs to be chosen so that the monitored variable (kinetic energy, pressure, velocity, or temperature) can reach steady-state.
 - Not every CFD problem reaches steady-state!
 - Low Reynolds number flow can go to steady-state
 - Turbulent flows can achieve steady-state in an average sense
- Activating the energy equation includes conduction and convection effects due to heat transfer
 - No support for radiation

Tip: Not every flow problem reaches steady-state

- Depends on the flow conditions and physics of the flow
- Example: Vortex shedding

- $Re = 40$: Steady and symmetric
- $Re = 100$: Unsteady, non-symmetric and not yet turbulent!
Incompressible Flow Analysis Procedure

• Time incrementation
 • Specify the time integration method for the various terms in the spatially discrete form of the Navier-Stokes equations

\[
C\dot{\mathbf{v}} = 0
\]

\[
M\mathbf{v} + A(\mathbf{v})\mathbf{v} + K\mathbf{v} = CP\mathbf{v} = \mathbf{F}
\]

- \(M \): Mass matrix, \(A(\mathbf{v}) \): Advection operator, \(K \): Viscous diffusion operator
- \(C \): Gradient operator, \(\nabla \): Divergence operator

<table>
<thead>
<tr>
<th>Time Integration Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscous:</td>
</tr>
<tr>
<td>(\cdot) Trapezoid (1/2)</td>
</tr>
<tr>
<td>(\cdot) Galerkin (2/3)</td>
</tr>
<tr>
<td>(\cdot) Backward-Euler (1)</td>
</tr>
<tr>
<td>Load-Boundary condition:</td>
</tr>
<tr>
<td>(\cdot) Trapezoid (1/2)</td>
</tr>
<tr>
<td>(\cdot) Galerkin (2/3)</td>
</tr>
<tr>
<td>(\cdot) Backward-Euler (1)</td>
</tr>
</tbody>
</table>

- Recommended method: Trapezoid method with automatic time incrementation
- Backward-Euler method: Use for steady-state problems (transient run reaching steady-state)
- Trapezoid and Galerkin method \(\sim O(\Delta t)^2 \)
- Backward-Euler \(\sim O(\Delta t) \)

Introduction to Abaqus/CFD

Incompressible Flow Analysis Procedure

• Time incrementation control
 • Default and recommended time incrementation method
 • Calculates time increment size automatically subject to convective stability limit
 - Courant-Friedrichs-Levy (CFL) condition
 - Arises due to explicit treatment of advective terms in the N-S equations
 • Grid Reynolds number and CFL number
 • Additionally, avoids numerical oscillations at startup when using trapezoid time integration rule for viscous terms

Automatic (fixed CFL) time incrementation

- Default and recommended time incrementation method
- Calculates time increment size automatically subject to convective stability limit
- Courant-Friedrichs-Levy (CFL) condition
- Arises due to explicit treatment of advective terms in the N-S equations
- Grid Reynolds number and CFL number
- Additionally, avoids numerical oscillations at startup when using trapezoid time integration rule for viscous terms

\[
\text{Grid Reynolds number and CFL number}
\]

\[
\text{Re}_i = \frac{\mathbf{v} \cdot \mathbf{h}_i}{2\nu}
\]

\[
\text{CFL}_i = \frac{\mathbf{v} \cdot \mathbf{h}_i \Delta t}{\|\mathbf{h}_i\|^2}
\]

i refers to the element local coordinate directions

Fixed time incrementation

- Fixed time increment size
- User has to ensure that the convective stability limit is honored
- May lead to an unstable analysis if the CFL condition is violated
Incompressible Flow Analysis Procedure

• Time incrementation control (cont’d)

Automatic (fixed CFL) incrementation

User-specified initial time increment (may be violated)
CFL limit
Check and adjust Δt every n increments
Increase Δt by scale factor every n increments

Convective stability limit

$$\Delta t \leq \frac{CFL \| h \|}{\| v \cdot h \|}$$
Minimum over element local directions and over all elements

One-dimensional case

Incompressible Flow Analysis Procedure

• Time incrementation control (cont’d)

Fixed time incrementation

Fixed Δt

• User-specified, constant time increment
• For stable analysis, choose time increment such that
 • Convective stability limit (CFL condition) is satisfied
 • Avoid numerical oscillations due to viscous (diffusive) terms at startup when using trapezoid time integration rule

Diffusive stability limit

$$\Delta t \leq \frac{v \| h \|}{1 + \sqrt{1 + \frac{Re}{2}}}$$
Minimum over element local directions and over all elements

One-dimensional case
Incompressible Flow Analysis Procedure

- Turbulence
 - For turbulent flows, you can activate a turbulence model
 - Turbulence model parameters are characteristic of turbulence models
 - Turbulence solution variables depend on the particular turbulence model chosen
 - Requires transport equation solver for turbulence variables
 - Solver options are controlled through transport equation solver controls
 - If a turbulence model is not chosen for high Reynolds number flow which is expected to be turbulent, implicit large eddy simulation (ILES) ensue.
 - Each turbulence model will require initial conditions and boundary conditions specific to that turbulence model
 - Will be discussed further when discussing initial and boundary conditions (Lecture 5)
Solution Algorithm

• Based on Semi-Implicit Projection Method

\[
\frac{\partial \mathbf{v}}{\partial t} + \nabla p = f + \mu \nabla^2 \mathbf{v} - \rho \mathbf{v} \cdot \nabla \mathbf{v}
\]

Momentum equation

\[
\nabla \cdot \mathbf{v} = 0
\]

Continuity equation

Step 1

Momentum Solve

\[
\mathbf{v}^{n+1} = \mathbf{v}^n - \frac{\Delta t}{\rho} \left(\nabla p^n - \mathbf{v} \cdot \nabla \mathbf{v}^{n+1} \right)
\]

• Ignore pressure gradient at time \(n+1\) and calculate an intermediate velocity

• The intermediate velocity \(\mathbf{v}^{n+1}\) is not divergence free

• \(\Phi\) is a function of velocity: its precise form and dependence on time \(n\) or \(n+1\) depends on how various terms in the N-S equations are treated – explicit, semi-implicit or implicit

• Linear system of equations if advection is treated explicitly!

Step 2

Pressure Solve

\[
\frac{\mathbf{v}^{n+1} - \mathbf{v}^{n+1}}{\Delta t} = -\nabla (p^{n+1} - p^n)
\]

• Poisson’s equation for pressure

• Yields correct pressure for next time increment

• Utilize \(\nabla \cdot \mathbf{v}^{n+1} = 0\)

Step 3

Obtain velocity

\[
\mathbf{v}^{n+1} = \mathbf{v}_0 + \frac{\Delta t}{\rho} (p^{n+1} - p^n)
\]

• Pressure velocity decoupling

• Gives a divergence-free velocity field every time increment

• Additional quantities to solve
 • Energy
 • Turbulence variables including distance function
Solution Algorithm

Inc.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Log file

- **Solution converged**
- **Iterations taken:** 8
 - $||r||/||b||$ error: 4.27e-03
 - $||b||/||x||$ error: 1.11e-06
- **Solution converged**
- **Iterations taken:** 8
 - $||r||/||b||$ error: 2.20e-07
 - $||b||/||x||$ error: 2.01e-06
- **Solution converged**
- **Iterations taken:** 8
 - $||r||/||b||$ error: 1.10e-06
 - $||b||/||x||$ error: 5.63e-06
- **Solution converged**
- **Iterations taken:** 10
 - $||r||/||b||$ error: 6.50e-08
 - $||b||/||x||$ error: 5.56e-06
- **Solution converged**
- **Iterations taken:** 4
 - $||r||/||b||$ error: 1.50e-08
 - $||b||/||x||$ error: 6.30e-08
- **Solution converged**
- **Iterations taken:** 14
 - $||r||/||b||$ error: 3.00e-05
 - $||b||/||x||$ error: 5.90e-06

Solution converged

Physics

- **Flow only**
- **Flow and energy**
- **Flow and turbulence**
- **Flow, energy and turbulence**

Solution quantities

- Pressure, velocity
- Pressure, velocity, temperature
- Pressure, velocity, wall-normal distance, turbulence quantities
- Pressure, velocity, temperature, wall-normal distance, turbulence quantities

Number of linear systems

- 4
- 5
- 6 or more
- 7 or more

Solution Algorithm

- Each equation is a linear system (explicit advection scheme)
- Require linear equation solvers ($Ax = b$)

Solution Algorithm

- For flow problems, wall-normal distance is calculated once at the beginning of the analysis.
- For flow problems where arbitrary Lagrangian-Eulerian (ALE) is activated (prescribed boundary motion or FSI), wall-normal distance will be updated more frequently.
- Number of turbulence variables depends on turbulence model chosen.
Linear Equation Solvers

\[Ax = b \]

\(x \): unknown quantity, \(A \): Coefficient matrix, \(b \): right hand side

- Due to large problem sizes, Abaqus/CFD uses iterative solvers to solve the linear systems of equations
 - Solve the equation iteratively until convergence or maximum iteration limit

\[
\left\| b - Ax^{i+1} \right\| < \delta \quad \left\| x^{i+1} - x^i \right\| < \varepsilon
\]

Solution increment

Residual norm

Equations
Solver diagnostic & convergence output
Iteration limit, convergence checking frequency and linear convergence limit, \(\delta \)
Linear Equation Solvers

- **Iterative techniques**
 - An iterative method attempts to solve a system of equations by finding successive approximations to the solution starting with an initial guess

\[Ax = b \]

- The Krylov subspace method is one such iterative technique
 - Conjugate gradient (CG) method
 - Flexible generalized minimum residual method (FGMRES)
 - Biconjugate gradient method (BiCG)
- The convergence and robustness of iterative solvers is often accelerated by **preconditioning** the linear system of equations
 - Transform the original linear system into one that has the same solution but which is likely to be easier to solve with an iterative solver

\[Ax = b \]

\[AP^{-1} P x = b \]

\[AP^{-1} y = b, \quad x = P^{-1} y \]

Linear Equation Solvers

- A system of equations is easier or tougher to solve depending on its condition number
 - Small condition number indicates well-conditioned system
 - Small change in the coefficient matrix or the right hand side results in a small change in the solution vector
 - Easier to solve
 - Large condition number indicates ill-conditioned system
 - Small change in the coefficient matrix or the right hand side results in a large change in the solution vector
 - Tougher to solve
Linear Equation Solvers

• Algebraic Multigrid (AMG) Technology
 • Theoretically AMG is a scalable iterative method in the sense that the number of iterations to convergence is not dependent on the mesh refinement for a given problem
 • This in turn ensures the cost of the solution grows proportional to the number of unknowns
 • AMG is most commonly used as a preconditioner for Krylov space iterative solvers
 • Well suited for large systems of equations
 • AMG preconditioners have many settings in general
 • A small subset of these are provided for cases where default settings or presets do not work or in the case performance optimization is desired
 • Smoother type
 • Number of smoother applications at each grid level

Linear Equation Solvers

• Why use multiple grids?
 • Although AMG is purely algebraic (it only requires a matrix A and a RHS vector b), it is much easier to explain the main idea geometrically
 • The main idea is to recursively create coarser versions of a problem where low-frequency errors on a grid level can be represented as high-frequency errors on the next coarse level
 • High-frequency errors are preferred because very inexpensive iterative solvers are available to eliminate them
 • In the context of AMG, these inexpensive iterative solvers used on multigrid levels are called SMOOTHERS (e.g., Incomplete factorization, Chebychev)
Linear Equation Solvers

- **Description of AMG algorithm**
 - Coarsening continues until the grid size is small enough to be solved using a direct solver
 - The number of grids depends on the problem size
 - The most common grid “visiting” scheme is called a V-Cycle and this is used for each solver iteration within Abaqus/CFD when AMG preconditioning is used

![Diagram of AMG algorithm]

Linear Solvers

<table>
<thead>
<tr>
<th></th>
<th>Preconditioner</th>
<th>Solver</th>
<th>Smoother (AMG only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum Equation</td>
<td>Diagonally scaled (DS)</td>
<td>• Flexible Generalized Minimal Residual method (FGMRES)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conjugate Gradient (CG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bi-conjugate Gradient Stabilized (BiCGSTAB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flexible Generalized Minimal Residual method (FGMRES)</td>
<td></td>
</tr>
<tr>
<td>Pressure Equation</td>
<td>• Algebraic Multi-Grid (AMG)</td>
<td>• Conjugate Gradient (CG)</td>
<td>• Incomplete Cholesky Factorization (ICC)</td>
</tr>
<tr>
<td></td>
<td>• Symmetric Succesive Over-Relaxation (SSOR)</td>
<td>• Bi-conjugate Gradient Stabilized (BiCGSTAB)</td>
<td>• Polynomial (Chebyshev)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flexible Generalized Minimal Residual method (FGMRES)</td>
<td></td>
</tr>
<tr>
<td>Transport Equation</td>
<td>• Diagonally scaled</td>
<td>• Flexible Generalized Minimal Residual method (FGMRES)</td>
<td>NA</td>
</tr>
</tbody>
</table>
Pressure Equation Solvers

• The solution to the pressure equation is the most time-consuming
 • Poisson’s equation for pressure is *global* in nature
 • A range of solver choices are available for solving the pressure equation
• AMG preconditioning is available with all three solver choices: CG, BiCGSTAB and FGMRES
• SSOR preconditioning is only available with CG solver
• Smoothers are only applicable when AMG preconditioning is used

<table>
<thead>
<tr>
<th>Time consumed: Solvers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Equation</td>
</tr>
<tr>
<td>Momentum Equation</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

% Wall Clock Time

Prototype Car Body
(Ahmed’s body)

16 Cores
Solution physical time = 0.1 sec

Helicity isosurfaces
Pressure Equation Solvers

- Each of the equation solvers has controls for:
 - Maximum number of iterations allowed
 - Convergence checking frequency
 - Linear convergence tolerance
 - Convergence output
 - Solver diagnostics

<table>
<thead>
<tr>
<th>Equation</th>
<th>Maximum number of iterations (default)</th>
<th>Convergence checking frequency (default)</th>
<th>Linear convergence tolerance (default)</th>
<th>Convergence output (default)</th>
<th>Solver diagnostics (default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum</td>
<td>50</td>
<td>2</td>
<td>1e-5</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Pressure</td>
<td>250 (AMG preconditioned solvers) 1000 (SSOR preconditioned CG solver)</td>
<td>2</td>
<td>1e-5</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Transport</td>
<td>50</td>
<td>2</td>
<td>1e-5</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Pressure Equation Solvers

- Solver presets

Smoothing for AMG preconditioning
Pressure Equation Solvers

- AMG preconditioned solvers are the recommended and default method for solving the pressure-Poisson equation

Preset 1
- AMG preconditioner
- Chebyshev smoother
- 2 smoothing sweeps
- CG solver

Preset 2 (Default)
- AMG preconditioner
- ICC smoother
- 1 smoothing sweep
- CG solver

Preset 3
- AMG preconditioner
- ICC smoother
- 1 smoothing sweep
- BiCGSTAB solver

Increasing complexity, increasing iteration cost & robustness

- Preset 1 is suitable for problems with good quality meshes
 - Uniform or slightly distorted meshes
 - Chebyshev smoother is less expensive than Incomplete factorization (ICC) but works best with meshes of good quality
 - May have performance benefit over Preset 2

Pressure Equation Solvers

- **Preset 2**
 - CG solver is very robust in general but might not converge if mesh is too distorted or has a very high aspect ratio

- **Preset 3**
 - BiCGSTAB solver is the most robust for meshes that are highly distorted and/or have high aspect ratios
 - Computationally more expensive than CG solver
 - Often used for FSI problems where mesh motion can distort the mesh

- **Other choices:**
 - SSOR preconditioned CG solver
 - Solver of “last resort”
 - May work for some problems where AMG preconditioning has failed
 - Example: Problems with high aspect ratio elements
 - Requires significantly larger number of iterations
 - Poor performance

Introduction to Abaqus/CFD
Pressure Equation Solvers

- **Convergence**
 - If the solution \(Ax = b \) to the pressure equation does not converge within a given time increment, a warning is issued but the analysis continues
 - If the solution to the pressure equation fails to converge for 50 continuous time increments, the analysis terminates with an error:

 ERROR: Pressure Poisson Equation - Too many non-converged iterations:
 Possible diagnostics are: (A) Check the aspect ratio of elements (ratio of element length in the flow direction to that of the length in the flow normal direction). Try increasing the number of iterations for the pressure solver, or changing the preset solver option to 3, or reducing the aspect ratio of the elements in the mesh. (B) Check the validity of the specified boundary conditions. For example, (i) if outflow boundary conditions are specified, check to see if proper surfaces are included, (ii) if gravity is present, check if the hydrostatic head is taken into account for any outflow pressure boundary conditions. (C) If this a Fluid-Structure Interaction problem, the amount of mesh deformation may be excessive. Permitting the mesh boundaries to slip in some areas may reduce element distortion

- Possible reasons for nonconvergence:
 - Large aspect ratio of elements
 - Incorrectly specified boundary conditions
 - Excessive mesh deformation for problems with prescribed displacement or fluid-structure interaction

Pressure Equation Solvers

- **Effect of mesh density and skewness**

 - Uniform mesh for flow in the square cavity (Flow Re = 100)
 - Uniform but distorted mesh for flow in 15° cavity (Flow Re = 100)

 - Uniform mesh for flow in the square cavity
 - Uniform but distorted mesh for flow in 15° cavity

 How do linear solvers behave?
 - Effect of mesh refinement
 - Effect of mesh skewness
Pressure Equation Solvers

- Effect of mesh refinement (square cavity)

All runs are done on 8 cores
Solution physical time: 1 sec

<table>
<thead>
<tr>
<th>Mesh Resolution</th>
<th>Average number of iterations (PPE) AMG + ICC + CG</th>
<th>Average number of iterations (PPE) SSOR + CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>128x128</td>
<td>12</td>
<td>151</td>
</tr>
<tr>
<td>256x256</td>
<td>20</td>
<td>308</td>
</tr>
<tr>
<td>512x512</td>
<td>34</td>
<td>-</td>
</tr>
</tbody>
</table>

Significant increase in iteration count going from AMG preconditioning to SSOR preconditioning

Pressure Equation Solvers

- Effect of mesh refinement (15° cavity)

All runs are done on 8 cores
Solution physical time: 1 sec

<table>
<thead>
<tr>
<th>Mesh Resolution</th>
<th>Average number of iterations (PPE) AMG + ICC + CG</th>
<th>Average number of iterations (PPE) SSOR + CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>128x128</td>
<td>38</td>
<td>554</td>
</tr>
<tr>
<td>256x256</td>
<td>57</td>
<td>Fails to converge in 1000 iterations</td>
</tr>
<tr>
<td>512x512</td>
<td>92</td>
<td>-</td>
</tr>
</tbody>
</table>

- Significant increase in iteration count between AMG and SSOR
- Aggravated by mesh skewness
Pressure Equation Solvers

Effect of mesh skewness (square vs. 15° cavity)

<table>
<thead>
<tr>
<th>Mesh Resolution</th>
<th>Problem</th>
<th>AMG + ICC + CG</th>
<th>SSOR + CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>128x128</td>
<td>square cavity</td>
<td>12</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>15° cavity</td>
<td>38</td>
<td>554</td>
</tr>
<tr>
<td>256x256</td>
<td>square cavity</td>
<td>20</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>15° cavity</td>
<td>57</td>
<td>Fails to converge in 1000 iterations</td>
</tr>
<tr>
<td>512x512</td>
<td>square cavity</td>
<td>34</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15° cavity</td>
<td>92</td>
<td>-</td>
</tr>
</tbody>
</table>

• Problem with skewed mesh requires more iterations to converge
• Effect on SSOR + CG is much more dramatic

Pressure Equation Solvers

• Effect of parallel processing (15° cavity)

Mesh size: 256x256
Solution physical time: 1 sec

<table>
<thead>
<tr>
<th># of cores</th>
<th>Average number of iterations (PPE) AMG + ICC + CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
</tr>
</tbody>
</table>

• Number of iterations may vary slightly with number of cores
Momentum Equation Solvers

- The momentum equation requires far fewer iterations to solve

 ***WARNING: The x-momentum equation may not have fully converged

- If viscous effects are dominant (for low Reynolds number flows), the momentum equation may have trouble converging
 - Increase the number of allowed iterations (default = 50)

Viscous effect (Channel flow)

<table>
<thead>
<tr>
<th>Reynolds number</th>
<th>Average number of iterations (X - momentum equation) (first 5 increments)</th>
<th>Average number of iterations (Y - momentum equation) (first 5 increments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>
Momentum Equation Solvers

• Convergence
 • If the solution to the momentum equation does not converge within a given time increment, a warning is issued but the analysis continues
 • If the solution to the momentum equation fails to converge for 50 continuous time increments, the analysis terminates with an error

***ERROR: X-momentum equation - Too many non-converged iterations: Possible diagnostics are: (A) The flow may be a highly viscous flow (typically, Reynolds number less than 1). If so, try increasing the number of iterations for the momentum solvers. (B) Some elements in the mesh may be badly distorted. Check the quality of the elements. If this is a deforming mesh problem, check to see if the displacement boundary conditions for the mesh are physical and check the mesh velocities. If the mesh velocities are too high, decreasing the time step value may reduce severe mesh distortion. (C) Boundary conditions specifications may not be consistent or may be erroneous. Check the boundary surfaces and see if the specification of a particular boundary condition is meaningful for that surface. Example of an improper boundary condition is the specification of both velocity and pressure boundary conditions for the same surface.

• For some problems, the equation may fail to converge at start up but recover afterwards
 • Check the residual to verify if the convergence is acceptable

***WARNING: The x-momentum equation may not have fully converged

Iterations taken : 52
||r||/||b|| error: 0.0002361
|dx||/|x|| error: 0.0001613

--- X Momentum ---
!!! Iteration failed to converge in specified number of passes !!!
reason: -3

• Possible diagnostics
 • Viscous effects dominate
 • Badly distorted elements
 • Incorrectly specified boundary conditions

--- Y Momentum ---
Equation Solver Output

- Convergence output

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

 - X-Momentum
 - Solution converged
 - Iterations taken: 8
 - \(|\mathbf{r}/||\mathbf{b}|||\) error: 4.272e-09
 - \(|\mathbf{d}\mathbf{r}/||\mathbf{x}|||\) error: 1.132e-06

 - Y-Momentum
 - Solution converged
 - Iterations taken: 8
 - \(|\mathbf{r}/||\mathbf{b}|||\) error: 2.204e-07
 - \(|\mathbf{d}\mathbf{r}/||\mathbf{x}|||\) error: 2.011e-06

 - Z-Momentum
 - Solution converged
 - Iterations taken: 8
 - \(|\mathbf{r}/||\mathbf{b}|||\) error: 1.105e-06
 - \(|\mathbf{d}\mathbf{r}/||\mathbf{x}|||\) error: 5.638e-06

 - 2-D Transport Model Equation
 - Solution converged
 - Iterations taken: 10
 - \(|\mathbf{r}/||\mathbf{b}|||\) error: 6.595e-08
 - \(|\mathbf{d}\mathbf{r}/||\mathbf{x}|||\) error: 5.568e-06

 - Energy Equation
 - Solution converged
 - Iterations taken: 10
 - \(|\mathbf{r}/||\mathbf{b}|||\) error: 1.576e-08
 - \(|\mathbf{d}\mathbf{r}/||\mathbf{x}|||\) error: 6.385e-06

 - Pressure Increment
 - Solution converged
 - Iterations taken: 14
 - \(|\mathbf{r}/||\mathbf{b}|||\) error: 3.056e-06
 - \(|\mathbf{d}\mathbf{r}/||\mathbf{x}|||\) error: 5.866e-06

- No convergence output is written by default
- Convergence output for each equation solver can be individually turned on
- Number of iterations taken, final residual and final solution increment is written
Equation Solver Output

• Diagnostic output

Momentum Equation

solver: \(||b|| = 2.599e-06
\)
solver: \(||x(0)|| = 0.0148
\)
solver: Iteration: 2 \(||x|| = 1.834e-08 \quad ||x(i+1)-x(i)|| = 0.0004975 \quad ||x(i+1)|| = 0.01417
\)
solver: Iteration: 4 \(||x|| = 1.036e-09 \quad ||x(i+1)-x(i)|| = 2.863e-05 \quad ||x(i+1)|| = 0.01415
\)
solver: Iteration: 6 \(||x|| = 9.6e-12 \quad ||x(i+1)-x(i)|| = 1.517e-06 \quad ||x(i+1)|| = 0.01415
\)
solver: Iteration: 8 \(||x|| = 2.87e-12 \quad ||x(i+1)-x(i)|| = 7.977e-08 \quad ||x(i+1)|| = 0.01415
\)

--- Solution converged ---

Iterations taken : 8

\(||x||/||b|| error: 1.106e-06
\)

Pressure Equation

solver: \(||b|| = 0.34608
\)
solver: \(||x(0)|| = 0
\)
solver: Iteration: 2 \(||x|| = 0.38375 \quad ||x(i+1)-x(i)|| = 24897 \quad ||x(i+1)|| = 47117
\)
solver: Iteration: 4 \(||x|| = 0.1275 \quad ||x(i+1)-x(i)|| = 4716.8 \quad ||x(i+1)|| = 45701
\)
solver: Iteration: 6 \(||x|| = 6.29435 \quad ||x(i+1)-x(i)|| = 625.4 \quad ||x(i+1)|| = 42878
\)
solver: Iteration: 8 \(||x|| = 0.0067216 \quad ||x(i+1)-x(i)|| = 192.43 \quad ||x(i+1)|| = 43078
\)
solver: Iteration: 10 \(||x|| = 0.0015552 \quad ||x(i+1)-x(i)|| = 26.183 \quad ||x(i+1)|| = 43166
\)
solver: Iteration: 12 \(||x|| = 0.00052982 \quad ||x(i+1)-x(i)|| = 24.867 \quad ||x(i+1)|| = 43147
\)
solver: Iteration: 14 \(||x|| = 3.9872 \quad ||x(i+1)-x(i)|| = 39.872 \quad ||x(i+1)|| = 43117
\)
solver: Iteration: 16 \(||x|| = 0.00023122 \quad ||x(i+1)-x(i)|| = 21.882 \quad ||x(i+1)|| = 43095
\)
solver: Iteration: 18 \(||x|| = 6.3186e-05 \quad ||x(i+1)-x(i)|| = 2.8974 \quad ||x(i+1)|| = 43090
\)
solver: Iteration: 20 \(||x|| = 1.8921e-05 \quad ||x(i+1)-x(i)|| = 0.24363 \quad ||x(i+1)|| = 43089
\)
solver: Iteration: 22 \(||x|| = 7.1792e-06 \quad ||x(i+1)-x(i)|| = 0.08347 \quad ||x(i+1)|| = 43089
\)
solver: Iteration: 24 \(||x|| = 4.046e-06 \quad ||x(i+1)-x(i)|| = 0.039297 \quad ||x(i+1)|| = 43089
\)
solver: Iteration: 26 \(||x|| = 9.4357e-07 \quad ||x(i+1)-x(i)|| = 0.010813 \quad ||x(i+1)|| = 43089
\)

--- Pressure Increment ---

Iterations taken : 26

\(||x||/||b|| error: 2.7244e-06
\)

Introduction to Abaqus/CFD
Notes
CFD Modeling Techniques – Part 2

Lecture 5

Overview

• Initial Conditions
• Boundary Conditions and Loads
• Output
• Deforming Mesh
• Monitoring Convergence
Initial Conditions

- The solution to the transient Navier-Stokes equations requires initial conditions be specified
 - Conditions on solution quantities at time $t = 0$

Density
Trivial for constant density flows

Velocity
Initial mass balance has to be achieved

Temperature
Required when heat transfer is modeled

Turbulence variables
Required when turbulence model is chosen
Initial Conditions

- Boundary conditions

Velocity: \(\mathbf{v}(x,t) = \mathbf{\hat{v}}(x,t) \) on \(\Gamma^1 \)

Traction: \(-p I + 2 \mu \mathbf{S} \cdot \mathbf{n} = \hat{t} \) on \(\Gamma^2 \)

- Initial condition:

\(\mathbf{v}(x,0) = \mathbf{v}_0(x) \)

- For a well-posed incompressible flow problem, prescribed initial conditions and boundary conditions must meet “solvability conditions”

 - If these conditions are met, the solution of the pressure-Poisson equation and momentum equation is equivalent to the solution of the momentum equation along with a divergence constraint:

\[
\mathbf{n} \cdot \mathbf{v}_0 = \mathbf{n} \cdot \mathbf{\hat{v}} \quad \text{on} \; \Gamma^1
\]

\[
\nabla \cdot \mathbf{v}_0 = 0 \quad \text{on} \; \Omega
\]

Initial Conditions

- For enclosed flows (no traction boundaries), mass conservation must be met

\[
\int_{\Gamma} \mathbf{n} \cdot \mathbf{v}_0 d\Gamma = 0
\]

- Abaqus/CFD tests the prescribed initial and boundary conditions to ensure that the solvability conditions are met

 - A divergence-free velocity field is obtained from the initial velocity field
 - Pressure-Poisson’s equation is solved
 - Based on built-in RMS divergence error tolerance
 - User-defined initial velocity field can be violated

Zero velocity initial conditions
Initial Conditions

INITIAL DIVERGENCE SUMMARY

Initial divergence 0.0028868

--- Initial Projection ---
iterations taken : 16
||r||/||b|| error: 6.0918e-11
||dx||/||x|| error: 3.7721e-12

--- Solution converged ---

Projected divergence 0.0001076
Net volumetric flux balance -6.7353e-12

--- Pressure Increment ---
iterations taken : 16
||r||/||b|| error: 6.7597e-10
||dx||/||x|| error: 4.177e-09

Velocity field: \(t = 0 \)

\[\left\| \nabla \cdot \mathbf{v} \right\|_{\text{rms}} \]

before projection

\[\left\| \nabla \cdot \mathbf{v} \right\|_{\text{rms}} \] after div-free projection

Initial Conditions

Density

- Trivial for constant density flows
 - Initial condition for density is not required for constant density incompressible flows
 - Fluid density from material specification is used

WARNING: No initial density has been prescribed. The default density from the material definition will be used.
Initial Conditions

• Velocity
 • Initial condition on velocity can be specified
 • By default, the initial velocities are assumed to be zero
 • Initial conditions on velocity may be violated
 • The initial velocities are recomputed during the initialization phase to ensure a well-posed incompressible flow problem

Initial Conditions

• Temperature
 • Initial condition on temperature has to be specified if heat transfer is modeled
 • An error is issued if initial temperature is not specified

***ERROR: An initial temperature field is required when the energy equation is active.
Initial Conditions

- **Turbulence variables**
 - Initial condition on turbulence variables need to be specified
 - The variable depends on the choice of turbulence model
 - An error is issued if the initial values of turbulence variables are not specified

 ERROR: An initial turbulent viscosity is required for this turbulence model.

 Turbulence variables required

<table>
<thead>
<tr>
<th>Turbulence model</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-equation Spalart-Allmaras</td>
<td>Kinematic turbulent viscosity</td>
</tr>
</tbody>
</table>

- **Turbulence variables (cont’d)**
 - The inlet turbulence can be specified as an initial condition
 - The proper specification of inlet turbulence will be addressed when discussing boundary conditions
Boundary Conditions and Loads

- Correct specification of the flow and thermal and turbulence conditions on flow boundaries is necessary to accurately model the physics of the flow
 - Boundary conditions define conditions at flow boundaries
Boundary Conditions and Loads

Where do I need boundary conditions?

<table>
<thead>
<tr>
<th>Flow inlet or outlet regions</th>
<th>Physical wall (stationary or moving) region</th>
<th>Far-field region</th>
<th>Zones where flow is abstracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid enters or leaves the flow solution domain</td>
<td>Fluid is constrained to “stick” to an obstruction, “No-Slip, no-penetration”</td>
<td>Imaginary flow solution domain boundaries</td>
<td>Approximating three-dimensional flow as two-dimensional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Symmetry conditions</td>
</tr>
</tbody>
</table>

Inlet

- **Pressure**
 - Specify when inlet pressure is known but velocity or mass flow rate is not known
- **Velocity**
 - Specify when inlet velocity or mass flow rate is known
 - For incompressible flow, \(\dot{m} = \rho A \cdot \mathbf{v} \)
- If heat transfer is active
 - Specify inlet temperature
- If turbulence model is active
 - Specify inlet turbulence
 - Variables depend on turbulence model chosen

<table>
<thead>
<tr>
<th>Turbulence model</th>
<th>Specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-equation Spalart-Allmaras</td>
<td>Kinematic turbulence viscosity</td>
</tr>
</tbody>
</table>
Boundary Conditions and Loads

- **Inlet: Specifying inlet turbulence**
 - Spalart-Allmaras turbulence model
 - One equation RANS turbulence model
 - Transport equation for modified kinematic turbulent viscosity, $\tilde{\nu}$
 - Boundary condition for kinematic turbulent viscosity, ν_t
 \[
 \nu_t = \tilde{\nu} \left(\frac{\tilde{\nu}}{\nu} \right) \left(\frac{u_t}{\tilde{s}} \right)
 \]
 - Method 1:
 - $\nu_t \approx \epsilon / 5 \tilde{\nu}$
 - Method 2:
 - Turbulence intensity and length scale are known
 \[
 \nu_t \approx \frac{3}{2} \frac{u_t}{l_t}
 \]

- **Outlet: Case 1**
 - Velocity or pressure is unknown at outlet (outflow boundary condition)
 - Velocity or pressure is part of the CFD solution
 - In this case, no BC needs to be specified
 - Homogeneous traction (natural) boundary condition: do-nothing BC
 - Do not use this approach if any of the inlets has a pressure boundary condition specified – Specify static pressure instead

 - Can be used if velocity inlet BC is specified
 - But pressure has to be specified at one node (at least) to eliminate hydrostatic pressure mode

- **Outlet: Case 2**
 - Velocity or pressure is specified at outlet (prescribed pressure boundary condition)
 - Boundary condition for pressure, P
 \[
 P = \text{constant}
 \]
 - Can be used if any of the inlets has a pressure boundary condition specified
 - Do not use this approach if any of the inlets has a reference velocity boundary condition specified – Specify reference velocity instead

- **Outlet: Case 3**
 - Velocity inlet BC is specified
 - Boundary condition for velocity, u
 \[
 u = \text{constant}
 \]
 - Can be used if any of the inlets has a reference velocity boundary condition specified
 - Do not use this approach if any of the inlets has a pressure boundary condition specified – Specify pressure instead
Boundary Conditions and Loads

• **Outlet: Case 2**

 • Static pressure known at outlet

 • Specify static pressure

 • Flow can reverse and actually enter the solution domain

 • Examples: External flows around structures, free surface flows, buoyancy driven flows, internal flows with outlets

 • Location of outlet boundary

 • Outlet BC of type “outflow” should only be located where solution gradients are small

 • Avoid regions of flow reversal

 • Ideally, the interior solution should be unaffected by the choice of location of the outlet

 • Static pressure BCs should not be specified in a re-circulating zone

Boundary Conditions and Loads

• **Specifying inlet/outlet BCs**

 Inlet/Outlet Boundary Condition

 (Pressure/Velocity)

 • Time dependence can be specified using amplitude curves

 - **Inlet/Outlet Boundary Condition**

 Name: Inlet

 Type: Fluid inlet/outlet

 Step: FlowStep (Flow)

 Region: Domain-1.inlet Edit Region...

 • Specify: Pressure Velocity

 Pressure: 100

 Amplitude: (Instantaneous)

 - Show options not applicable to current flow steps

 OK Cancel

 - Show options not applicable to current flow steps

 OK Cancel

 - **Inlet/Outlet Boundary Condition**

 Name: Inlet

 Type: Fluid inlet/outlet

 Step: FlowStep (Flow)

 Region: Domain-1.inlet Edit Region...

 • Specify: Pressure Velocity

 Pressure: 100

 V1: 1.0

 V2: 0.0

 V3: 0.0

 Amplitude: (Instantaneous)

 - Show options not applicable to current flow steps

 OK Cancel

 - Show options not applicable to current flow steps

 OK Cancel
Boundary Conditions and Loads

- Specifying inlet/outlet BCs (cont’d)

Inlet/Outlet Boundary Condition (Thermal)

Inlet/Outlet Boundary Condition (Turbulence)

Specify inlet turbulence
Boundary Conditions and Loads

- **Wall: Velocity BC**
 - No-slip/no-penetration wall
 - Surface where the fluid adheres to the wall without penetrating it
 - Prescribed by setting all fluid velocity components equal to the wall velocity (zero if the wall is not moving)
 - No-slip condition is only relevant for viscous flows
 - Not physically relevant for inviscid flows; use only no-penetration condition for inviscid flows

- **Wall: Velocity BC (cont’d)**
 - Slip wall
 - Surface where the fluid does not adhere to the wall but can not penetrate it
 - Prescribed by setting the wall-normal fluid velocity equal to the wall velocity (zero if the wall is not moving)
 - Infiltration wall
 - Permits the fluid to penetrate the surface while maintaining the no-slip condition
 - Prescribed by setting the wall-normal velocity equal to the velocity representing the infiltration velocity, while the wall-tangent fluid velocity is equal to the wall velocity (zero if the wall is not moving)
Boundary Conditions and Loads

- Wall: Thermal
 - If heat transfer is active, you can specify:
 - Wall temperature
 - Wall heat flux
 - A wall is typically a part of a solid body
 - Examine the Biot number to determine if modeling heat transfer within the solid is necessary (conjugate heat transfer)
 - $\text{Bi} \ll 1$:
 - Heat conduction inside the solid body occurs much faster than the heat convection away from its surface; use temperature BC at solid walls
 - $\text{Bi} \gg 1$:
 - Need to consider spatial variation of temperature within the solid; include effects of conduction in the solid

\[
\text{Biot Number (Bi)} = \frac{hL}{k_{\text{solid}}}
\]

- Wall: Turbulence
 - Turbulence models require special boundary conditions at walls
 - Wall-normal distance
 - Boundary conditions on turbulence variable
 - Not required for infiltration walls
 - If fluid penetrates the surface, need to specify inlet turbulence instead

Turbulence specific BCs at walls

<table>
<thead>
<tr>
<th>Turbulence model</th>
<th>Wall-normal distance</th>
<th>Turbulence variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-equation Spalart-Allmaras</td>
<td>Yes</td>
<td>Modified kinematic turbulent viscosity, $\nu = 0$</td>
</tr>
</tbody>
</table>
Boundary Conditions and Loads

• Wall: Turbulence (cont’d)
 • Wall-normal distance
 • Distance from walls
 • Required to enable near-wall modeling
 • Using wall-functions with turbulence models
 • Built-in damping functions for low-Reynolds number turbulence models
 • Calculated by Abaqus/CFD
 • For flow problems, only need to calculate once at start-up
 • If the mesh deforms, the wall-normal distance is frequently calculated and updated; for example:
 • Fluid-structure interaction problems
 • Flow problems with prescribed boundary motion

Distance, \(d \)

Additional solution cost

Boundary Conditions and Loads

• Wall: Turbulence (cont’d)
 • Wall-normal distance (cont’d)
 • Poisson’s equation for distance function is solved
 • Boundary conditions for distance function calculation
 • \(d = 0 \) at walls (no-slip and shear conditions)
 • Automatically set by Abaqus/CAE at surfaces with no-slip and shear wall conditions
 • Automatically set by Abaqus/CFD for FSI problems (where wall conditions need not be defined on FSI surface)
 • Visualize by requesting output variable DIST

3 element aerofoil
Boundary Conditions and Loads

• Wall: Turbulence (cont’d)
 • Wall-normal distance (cont’d)

| Distance Function | Solution converged | iterations taken: 16 | ||r||/||b|| error: 1.253e-06 | ||dx||/||x|| error: 3.052e-08 |

| X-Momentum | Solution converged | iterations taken: 6 | ||r||/||b|| error: 1.713e-08 | ||dx||/||x|| error: 4.986e-06 |

| Y-Momentum | Solution converged | iterations taken: 6 | ||r||/||b|| error: 6.386e-07 | ||dx||/||x|| error: 6.572e-06 |

| Z-Momentum | Solution converged | iterations taken: 8 | ||r||/||b|| error: 1.597e-07 | ||dx||/||x|| error: 1.007e-06 |

| S-A Transport Model Equation | Solution converged | iterations taken: 10 | ||r||/||b|| error: 8.463e-08 | ||dx||/||x|| error: 7.324e-06 |

• Turbulent flow problems with mesh deformation incur additional solution costs associated with frequent updating of wall-normal distances.

- Specifying wall BCs

Wall Boundary Condition (Velocity)

No-slip/no-penetration wall condition
Slip wall condition
Infiltration wall condition
Boundary Conditions and Loads

- Specifying wall BCs (cont’d)

Wall Boundary Condition
(Thermal)

- The thermal energy tab is active only if heat transfer is selected on the incompressible flow step

Wall temperature
Wall heat flux

Boundary Conditions and Loads

- Specifying wall BCs (cont’d)

Wall Boundary Condition
(Turbulence)

- Turbulence BCs automatically set for no-slip and shear wall conditions

- Must specify inlet turbulence for infiltrating fluid
Boundary Conditions and Loads

• **Symmetry**
 • Modeling abstraction to reduce the computational model size
 • Normal component of the velocity is zero
 • Gradient of other quantities along the normal direction is zero
 • Use inlet/outlet BC for specifying velocity condition

Boundary Conditions and Loads

• **Tips**
 • Geometric symmetry need not imply symmetric flow patterns
 • Flow asymmetry can be introduced due to
 • Flow conditions (Example: Flow Reynolds number)
 • Physics of the flow (Example: Instabilities, Bifurcations etc.)
 • Body forces
 • Vortex shedding at $Re = 100$
 • Temperature: Convection between concentric cylinders at $Ra = 48000$
Boundary Conditions and Loads

- **Body forces**
 - Specified as loads
 - E.g., body force due to rotation
 - Specify body force *per unit volume*

- **Gravity**
 - Natural convection using Boussinesq body forces
 - Specify acceleration due to gravity
 - When modeling natural convection, the expansion coefficient of the fluid must be specified to ensure thermal-momentum coupling
 - A warning is issued if the expansion coefficient is not specified

Warning: Buoyancy driven flow will not occur in this analysis because the thermal expansion coefficient of the fluid has not been specified. Buoyancy forces will be zero as a result.
Boundary Conditions and Loads

• **Volumetric heat sources**
 - Specify volumetric heating sources in the fluid

 ![Create Load](image1)

 ![Edit Load](image2)

 • Specify body heat flux *per unit volume*

Boundary Conditions and Loads

• **Reference pressure**
 - In incompressible flows, the pressure is only known to within an arbitrary additive constant (the hydrostatic pressure)
 - Specifying pressure at an outflow boundary sets the hydrostatic pressure level
 - If no pressure BC is prescribed, it is necessary to set the hydrostatic pressure level at one node (at least) in the mesh
 - Ensures non-singularity of the pressure equation
 - If pressure boundary conditions are prescribed in addition to the reference pressure level, the reference pressure simply adjusts the output pressures according to the specified pressure level
 - Disconnected regions: Each requires its own hydrostatic pressure level to be set

 ![Create Load](image3)

 ![Edit Load](image4)
Output

Field output
- Available at nodes
- Honors the applied boundary conditions

History output
- Available at element centers
- May seem to violate the applied boundary conditions since these quantities are from element center

- Output is available at
 - Every \(n \) increments (default is 1)
 - Evenly spaced time intervals (default is 20)
 - Every \(x \) units of time

- Output is available at approximate times
 - Analysis does not cut back to output at exact times

- Preselected default output is available
- Output variables that are not relevant to an analysis are ignored by Abaqus/CFD
Output

<table>
<thead>
<tr>
<th>Field Output</th>
<th>History Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Velocity</td>
<td>Velocity</td>
</tr>
<tr>
<td>Density</td>
<td>Density</td>
</tr>
<tr>
<td>Helicity</td>
<td></td>
</tr>
<tr>
<td>Vorticity</td>
<td></td>
</tr>
<tr>
<td>Enstrophy</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>Temperature</td>
</tr>
<tr>
<td>Divergence of Velocity</td>
<td>Yes</td>
</tr>
<tr>
<td>Turbulence</td>
<td>Kinematic turbulence viscosity</td>
</tr>
<tr>
<td></td>
<td>Wall-normal distance</td>
</tr>
<tr>
<td>Mesh displacement</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Field output

```
Edit Field Output Request
```

```
Output Variables:
- P, Displacement/Velocity/Acceleration
- U, Translational and rotational velocities
- V, Translational and rotational velocities
- T, Thermal
- P, Pressure
- DENSITY, Material density
- PRESSURE, Pressure
- DIVERGENCE, Divergence of the velocity
- DIST,宁-Normal distance
- ENTHALPY, Enthalpy
- HELICITY, Dot product of vorticity and velocity
- TURBEN, Turbulent kinetic viscosity
- SIGM2, Second invariant of the velocity gradient
- VORTICITY, Curl of velocity vector
```

History output

```
Edit History Output Request
```

```
Output Variables:
- P, Displacement/Velocity/Acceleration
- U, Translational and rotational velocities
- V, Translational and rotational velocities
- T, Thermal
- P, Pressure
- DENSITY, Material density
- PRESSURE, Pressure
- DIVERGENCE, Divergence of the velocity
- TURBEN, Turbulent kinetic viscosity
```

Introduction to Abaqus/CFD
Deforming Mesh

- Mesh deformation is required for problems involving moving boundaries
 - Prescribed boundary motion
 - Fluid-structure interface motion due to structural deformation
 - Arbitrary Lagrangian-Eulerian (ALE) method
 - Hyperfoam material model
 - Material parameters are automatically determined
 - Preserves boundary layer mesh
- Automatically activated for problems that involve moving boundaries
 - No user control available
Deforming Mesh

• Boundary conditions need to be specified for mesh motions
 • Displacement condition on mesh nodes
 • Mesh needs to be appropriately constrained to prevent rigid-body motion
 • For a symmetry face, appropriate symmetry conditions on mesh displacement need to be applied

• For boundary motions caused by structural motion/deformation (modeled as part of a structural analysis), no mesh displacement boundary conditions are needed
 • Dictated by the FSI coupling

• Visualize by requesting mesh displacement output variable, U

Monitoring Convergence
Monitoring Convergence

- For incompressible flows, continuity equation has to be satisfied
 - Measured by divergence (RMS)

\[\| \nabla \cdot \mathbf{v} \|_{\text{RMS}} = \sqrt{\frac{\sum N}{N} (\nabla \cdot \mathbf{v})^2} \]

Volume error

\[\varepsilon_{\text{volume}} = \frac{\| \nabla \cdot \mathbf{v} \|_{\text{RMS}}}{\Delta t} \]

Divergence (RMS)

Status (.sta) file

<table>
<thead>
<tr>
<th>CFD Incompressible Flow</th>
<th>Step</th>
<th>Inc</th>
<th>DT</th>
<th>Time</th>
<th>RMS Div.</th>
<th>KE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0.01000</td>
<td>0.000000</td>
<td>4.87625e-07</td>
<td>0.129588</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0.01025</td>
<td>0.0102500</td>
<td>6.03596e-07</td>
<td>0.129617</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0.01051</td>
<td>0.0207562</td>
<td>6.43673e-07</td>
<td>0.129641</td>
</tr>
</tbody>
</table>

- Smaller values indicate better mass balance
 - Should be < 1e–3
Notes
Overview

• Setting up FSI Analyses
• Case Study 3: Flow around a Spring-loaded Rigid Circular Cylinder
• Conjugate Heat Transfer Analyses
• Case study introduction

1. Flow around a rigid circular cylinder
2. Flow around an oscillating rigid circular cylinder
3. Flow around a spring-loaded rigid circular cylinder

<table>
<thead>
<tr>
<th>Problem description</th>
<th>Flow around a rigid circular cylinder</th>
<th>Flow around an oscillating rigid circular cylinder</th>
<th>Flow around a spring-loaded rigid circular cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow domain</td>
<td>Around the cylinder</td>
<td>Around the cylinder but domain changes due to cylinder’s oscillation</td>
<td>Around the cylinder but domain changes due to cylinder’s oscillation</td>
</tr>
<tr>
<td>How do I model it?</td>
<td>1) Model fluid flow</td>
<td>1) Model fluid flow</td>
<td>1) Model fluid flow</td>
</tr>
<tr>
<td></td>
<td>2) Mesh is fixed</td>
<td>2) Allow mesh at cylinder surface to accommodate displacements (ALE)</td>
<td>2) Allow mesh at cylinder surface to accommodate displacements (ALE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Model the cylinder and the spring in structural solver (co-simulation)</td>
<td>3) Model the cylinder and the spring in structural solver (co-simulation)</td>
</tr>
<tr>
<td>Cylinder motion</td>
<td>None</td>
<td>Modeled in Abaqus/CFD as a boundary condition</td>
<td>Determined by structural analysis (two separate models)</td>
</tr>
</tbody>
</table>

Introduction to Abaqus/CFD
Case Study 3: Flow around a Spring-loaded Rigid Circular Cylinder

Introduction

- Consider the case of flow around a spring-loaded rigid circular cylinder
 - Flow at Reynolds number = 100
 - Boundary motion due to structural deformation
 - The structural deformation and fluid velocities are governed by the coupled physics
 - Boundary conditions on the mesh displacements and fluid velocities are dictated by the structural deformation
Defining the CFD Model

1. Define boundary conditions

Wall (no-slip, no-penetration)

- $V_x = V_{cylinder}$
- $V_y = 0$
- $V_z = 0$

Flow outlet

$p = 0$

Far field

- $V_x = 0.1$
- $V_y = 0$
- $V_z = 0$

Flow inlet

- $V_x = 0.1$
- $V_y = 0$
- $V_z = 0$

Symmetry

- $V_z = 0$

Cylinder surface still requires no-slip, no-penetration boundary condition but this boundary condition is now dictated by the FSI coupling

Define fluid-structure interaction instead

Suppress the wall BC on the cylinder surface

1. Define boundary conditions (cont'd)

Boundary conditions for mesh motion

Wall

- $U_x = U_{cylinder}$
- $U_y = 0$
- $U_z = 0$

Fixed *

- $U_x = 0$
- $U_y = 0$
- $U_z = 0$

Symmetry

- $U_z = 0$

Cylinder surface still requires mesh displacement boundary condition but this boundary condition is now dictated by FSI coupling

Define fluid-structure interaction instead

* As an alternative, the far-field and outlet boundary conditions on the mesh can be left unspecified leaving the mesh to slip (tow-tank condition)
Defining the CFD Model

2. Define fluid-structure interaction

- The interaction surface needs to be defined
 - Only one surface per co-simulation definition*
 - Only one FSI co-simulation definition per analysis step

* If necessary, multiple surfaces can be merged into a single surface

Defining the CFD Model

2. Define fluid-structure interaction (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Abaqus/Standard + Abaqus/CFD</th>
<th>Abaqus/Explicit + Abaqus/CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Abaqus/Standard</td>
<td>Abaqus/CFD</td>
</tr>
<tr>
<td>Fluid-structure interaction</td>
<td>Export</td>
<td>Displacement Velocity</td>
</tr>
<tr>
<td>Import</td>
<td>Forces</td>
<td>Displacement Velocity</td>
</tr>
</tbody>
</table>

- The displacements and velocities that are being imported into Abaqus/CFD from Abaqus/Standard or Abaqus/Explicit serve as the necessary boundary conditions at the FSI interface.
Defining the Structural Model

Rigid cylinder
- The cylinder is constrained to move in the axial flow direction

Fixed at ground (U = 0)

Axial Connector definition
- Defines a spring with linear stiffness, \(K = 1 \text{ N/m} \)

- The FSI interface in the structural and CFD models should be co-located

Defining the Structural Model

- Define fluid-structure interaction
 - Define fluid-interaction surface
 - The interaction surface needs to be defined
 - Only one surface per co-simulation definition*
 - Only one FSI co-simulation definition per analysis step can be defined

 * If necessary, multiple surfaces can be merged into a single surface
FSI Analysis Execution

- Coupled fluid-structure interaction jobs can be set up and run interactively using the co-execution framework in Abaqus/CAE

Postprocessing FSI Analyses

- Open the structural and CFD output databases simultaneously

- Can also overlay viewports from multiple output databases
Postprocessing FSI Analyses

Conjugate Heat Transfer
Introduction

- Model heat transfer within a solid region that interacts with the surrounding fluid

- We will show a simple example to demonstrate the basic concepts involved
 - Transient conjugate heat transfer between a printed circuit board (PCB)-mounted electronic component and ambient air
 - Specified power dissipation within the component

- Heat transfer mechanism involved
 - Heat transfer within the component and the PCB due to conduction – Modeled in Abaqus/Standard
 - Heated surface of the PCB/Component induces a temperature-dependent density differential in the surrounding air
 - Buoyancy-driven natural convection is set up
 - Modeled in Abaqus/CFD

Defining the CFD Model

- CFD mesh is built around the PCB/Component
- Material properties for air
 - Density: 1.127 Kg/m³
 - Viscosity: 1.983x10⁻⁵ kg/m/s
 - Thermal conductivity: 2.71x10⁻² W/m/K
 - Specific heat \((C_p)\): 1006.4 J/Kg/K
 - Thermal expansion coefficient: 3.43x10⁻³ /K

- Thermal expansion property for air has been specified to enable coupling between momentum and energy equations – Natural convection

- Define thermal initial condition
 - Initial temperature of air = 293 K

- Define gravity load
Defining the CFD Model

- Boundary conditions

 - Top surface: \(p = 0 \)
 - PCB/Component interface: No-slip/no-penetration
 - Bottom surface: No-slip/no-penetration

- PCB/Component surfaces require thermal boundary conditions:
 - Should not be specified in CFD model
 - Dictated by thermal coupling with the solid
 - Create co-simulation interaction instead

- No boundary conditions are needed on surrounding walls
- Free outflow surfaces

- Define thermal interaction

- The co-simulation definition enables thermal coupling between the fluid and the structure

<table>
<thead>
<tr>
<th>Coupling type</th>
<th>Option</th>
<th>Abaqus/Standard</th>
<th>Abaqus/CFD</th>
<th>Abaqus/Explicit</th>
<th>Abaqus/CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjugate heat transfer</td>
<td>Export</td>
<td>Temperature</td>
<td>Heat flux</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Import</td>
<td>Heat flux</td>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Abaqus/CFD
Defining the Structural Model

- Printed circuit board (PCB)-mounted electronic component
 - Heat transfer step in Abaqus/Standard

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (Kg/m³)</th>
<th>Specific heat (J/Kg/K)</th>
<th>Thermal conductivity (W/m/K)</th>
<th>Thermal expansion (/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB substrate</td>
<td>8950</td>
<td>1300</td>
<td>19.25</td>
<td>1.6 × 10⁻⁵</td>
</tr>
<tr>
<td>Encapsulant</td>
<td>1820</td>
<td>882</td>
<td>0.63</td>
<td>1.9 × 10⁻⁵</td>
</tr>
<tr>
<td>Die</td>
<td>2330</td>
<td>712</td>
<td>130.1</td>
<td>3.3 × 10⁻⁶</td>
</tr>
<tr>
<td>Heat slug</td>
<td>8940</td>
<td>385</td>
<td>398</td>
<td>3.3 × 10⁻⁶</td>
</tr>
</tbody>
</table>

Defining the Structural Model

- Define thermal interaction
Results

Surrounding air:
Temperature and velocity contours

PCB/Component:
Temperature contours

Introduction to Abaqus/CFD
Notes
Overview

- FSI Analysis Workflow
- FSI Analysis Attributes
- Conjugate Heat Transfer
FSI Analysis Workflow

- Develop the structural model (Abaqus/Standard or Abaqus/Explicit)
 - Identify the fluid-structure interfaces
 - Co-locate the interface boundary between the fluid and the structural domains
 - Verify the structural model using “assumed” pressure/heat flux loads at the interface
 - Apply pressure/heat flux load magnitudes that are reasonable and similar to the expected fluid loads

- Develop the CFD model (Abaqus/CFD)
 - Define the fluid-structure interface wall boundary
 - Co-locate the interface boundary between the fluid and the structural domains
 - Verify your CFD-only analysis by prescribing temperatures at the interface wall
FSI Analysis Workflow

- Develop the CFD model (cont’d)
 - Verify your CFD-only analysis by moving the interface wall
 - Modeling mesh motion in Abaqus/CFD requires correct specification of boundary conditions on nodes
 - Ensure that boundary conditions on the mesh motion required at non-FSI interfaces are correctly defined

 Flow around a baffle

 - Prescribed “test” displacement
 - Fixed mesh
 - CFD-only

 - Define FSI interaction (BC dictated by structural solver)
 - Fixed mesh
 - FSI

FSI Analysis Workflow

- Interconnect the structural and CFD models for the co-simulation
 - Delete the “assumed loads”
 - Define the fluid-structure interaction and the exchange variables

- Run the FSI analysis
 - Create co-execution jobs

- Postprocess the structural and CFD solution

 It is unlikely that the coupled analysis will be successful if the individual structural and CFD analyses are incorrectly set up!
FSI Analysis Attributes

Coupling type
- Uni-directional
- Bi-directional

Coupling schemes
- Algorithm

Rendezvousing
- Coupling step size
- Time incrementation

Coupling strength
- Weak coupling
- Strong coupling
FSI Analysis Attributes

- **Coupling type**
 - Unidirectional coupled analysis
 - Coupling strength in one direction may be so small as to be negligible
 - Common with mechanical structural response influence on fluid
 - Enables a sequential "one-way" analysis: fluid, then structure
 - For transient analysis, need to perform one-way coupling at designated time level

 ![Diagram showing fluid and structure interaction](image)

 \[\text{FLUID} \quad \text{loads} \quad \text{deflections} \quad \text{STRUCTURE} \quad \text{loads} \quad \text{deflections} \quad \text{Is ignored since negligible}\]

- **Bidirectional coupled analysis**
 - The fluid and structural fields affect each other
 - The solution needs to be computed in a coupled manner
FSI Analysis Attributes

- **Coupling scheme**
 - Gauss-Seidel (serial) coupling scheme
 - One solver waits while the other solver proceeds

![Diagram showing coupling scheme between structure and CFD]

- Abaqus/Standard or Explicit leads the simulation
- Abaqus/CFD lags
- Automatically set – No user control

FSI Analysis Attributes

- **Rendezvousing**
 - Coupling step size is determined automatically

- Two methods to determine the coupling step size
 - Min/Min
 - Minimum coupling step size based on the suggested coupling step size of structural and CFD models
 - Import/Export
 - Structural model imports the time step size from CFD model

- The coupling step size is always reached exactly in both the structural and CFD analyses
FSI Analysis Attributes

- **Rendezvousing**
 - Time incrementation strategy
 - Two methods available
 - **Subcycling**
 - Model takes one or more increments to reach the next coupling time
 - **Lockstep**
 - Model takes only one increment to reach the next coupling time
 - The CFD model always moves ahead to the next coupling time in a lockstep fashion
 - The structural model (Abaqus/Standard or Abaqus/Explicit) will either subcycle or lockstep
FSI Analysis Attributes

- **Coupling strength**
 - The FSI technology is based on a sequentially staggered methodology

 - The native FSI capability in Abaqus addresses weak to moderately coupled FSI problems
 - For problems where “added-mass” effects are important, this approach may lead to numerical instabilities
 - Occurs when fluid density is close to the density of the structure

- **Added mass effect**
 - The fluid acts as an extra mass on the structural degrees of freedom at the coupling interface
 - Ignoring added mass effect can cause numerical instability
 - Limit density ratios $\rho_s/\rho_f >> 1$

FSI Analysis Attributes

- **“Symptoms” of instability**
 - The bigger the density ratio, the worse the instability gets
 - Rapidly moving interface (high accelerations)
 - With decreasing Δt, the instability occurs earlier
 - Uncharacteristic behavior for explicit coupling
 - Increased fluid viscosity increases the instability while increased structural stiffness offers a decreasing effect
Conjugate Heat Transfer

- Model heat transfer within a solid region that interacts with a surrounding fluid
 - Examples:
 - Engine manifold
 - Electronic circuit boards
- Can be followed by a sequential thermal-stress analysis
Conjugate Heat Transfer

- Two approaches
 - Model heat transfer in the solid completely within the CFD code
 - Not available in Abaqus/CFD
 - Model heat transfer in the solid using the structural solver and perform co-simulation with the CFD code
 - Available method
 - Dissimilar meshes can be used at the interface
 - Coupling utilizes the optimal time increment based on the time increment of both the structural solver and the CFD solver

Conjugate Heat Transfer

- Stability of conjugate heat transfer analyses
 - Conjugate heat transfer analyses are conditionally stable
 - The stability envelope is very large and is unlikely to be encountered in practical applications
Conjugate Heat Transfer

- The stability envelope
 \[
 \Delta t_{\text{crit}} = \frac{\Delta x_f^2}{r \alpha_f},
 \]
 where
 \[
 \alpha_f = \frac{k_f}{\rho_f c_p}, \quad r = \frac{c_{p_f} \Delta x_f}{c_{p_s} \Delta x_s}
 \]

<table>
<thead>
<tr>
<th>Materials</th>
<th>Δx_s</th>
<th>Δx_f</th>
<th>r</th>
<th>$\Delta t_{\text{crit}} = (\Delta x_f)^2/r \alpha_f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Steel</td>
<td>1×10^{-3}</td>
<td>1×10^{-6}</td>
<td>1.1×10^{-3}</td>
<td>6×10^{-3}</td>
</tr>
<tr>
<td>Liquid metal-Steel</td>
<td>1×10^{-3}</td>
<td>1×10^{-6}</td>
<td>6.4×10^{-4}</td>
<td>9×10^{-4}</td>
</tr>
</tbody>
</table>

- **Worst case scenario example**
 - Liquid metal/Steel
 - Fine turbulent boundary layer fluid mesh
 - Fine mesh in solid domain

Conjugate Heat Transfer

- Examples of unstable analysis (triggered due to incorrect units)

Materials

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>Δt_{crit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Steel</td>
<td>0.2</td>
<td>~17</td>
</tr>
<tr>
<td>Incorrect units (Units for C_p were given in J/g K instead of J/Kg K)</td>
<td>0.2</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Unstable temperature for $\Delta t = 0.2 > 0.02$
Conjugate Heat Transfer

• Tips
 • For conjugate heat transfer analyses, the stability envelope is much wider
 • To gauge stability, monitor the interface temperature
 • If the analysis goes unstable:
 • Check the units of the material properties
 • Ensure that the physical properties are realistic
Notes
Postprocessing CFD/FSI Analyses

Overview

- Abaqus/CAE Tips
- Isosurfaces
- View Cuts
- Vector Plots
Abaqus/CAE Tips

- Useful settings for postprocessing CFD output databases (ODBs)

1. Turn off mesh display
2. Use continuous contour intervals
Abaqus/CAE Tips

- **Useful settings (cont’d)**

3. Activate translucency

4. Fast view manipulation (for large CFD models)
Abaqus/CAE Tips

- Other tips
 - Open multiple ODBs simultaneously
 - Structural and CFD models

Can automatically overlay views from multiple output databases

Isosurfaces
Isosurfaces

- An isosurface is a surface that represents points of constant value (e.g., pressure, temperature, velocity, etc.) within a volume
 - Frequently used in CFD visualization
 - Displays useful features of fluid flow

Uniform or user-defined intervals

View Cuts
View Cuts

- View cuts can be used to visualize the interior of the flow domain
 - Multiple view cuts can be used simultaneously

Creating a cut plane

Activate multiple view cuts
Translate or rotate a plane

Vector Plots
Vector Plots

- Vector plots are often used in CFD visualization
 - Can be used in conjunction with view cuts

- Velocity vectors, by default, are colored by the primary variable

Vector Plots

- Vector density on the vector plot can be controlled
 - Uniform color
 - Vector size scaling
 - Drag to control the vector plot density
Notes
Notes
Workshop Preliminaries

Setting up the workshop directories and files

If you are taking a public seminar, the steps in the following section have already been done for you: skip to Basic Operating System Commands, (p. WP.2). If everyone in your group is familiar with the operating system, skip directly to the workshops.

The workshop files are included on the Abaqus release CD. If you have problems finding the files or setting up the directories, ask your systems manager for help.

Note for systems managers: If you are setting up these directories and files for someone else, please make sure that there are appropriate privileges on the directories and files so that the user can write to the files and create new files in the directories.

Workshop file setup

(Note: UNIX is case-sensitive. Therefore, lowercase and uppercase letters must be typed as they are shown or listed.)

1. Find out where the Abaqus release is installed by typing

 UNIX and Windows NT: `abqxxx whereami`

 where `abqxxx` is the name of the Abaqus execution procedure on your system. It can be defined to have a different name. For example, the command for the 6.10–1 release might be aliased to `abq6101`.

 This command will give the full path to the directory where Abaqus is installed, referred to here as `abaqus_dir`.

2. Extract all the workshop files from the course tar file by typing

 UNIX: `abqxxx perl abaqus_dir/samples/course_setup.pl`

 Windows NT: `abqxxx perl abaqus_dir\samples\course_setup.pl`

 Note that if you have Perl and the compilers already installed on your machine, you may simply type:

 UNIX: `abaqus_dir/samples/course_setup.pl`

 Windows NT: `abaqus_dir\samples\course_setup.pl`

3. The script will install the files into the current working directory. You will be asked to verify this and to choose which files you wish to install. Choose “y” for the appropriate lecture series when prompted. Once you have selected the lecture series, type “q” to skip the remaining lectures and to proceed with the installation of the chosen workshops.
Basic operating system commands

(You can skip this section and go directly to the workshops if everyone in your group is familiar with the operating system.)

Note: The following commands are limited to those necessary for doing the workshop exercises.

Working with directories

1. Start in the current working directory. List the directory contents by typing
 UNIX: `ls`
 Windows NT: `dir`
 Both subdirectories and files will be listed. On some systems the file type (directory, executable, etc.) will be indicated by a symbol.

2. Change directories to a workshop subdirectory by typing
 Both UNIX and Windows NT: `cd dir_name`

3. To list with a long format showing sizes, dates, and file, type
 UNIX: `ls -l`
 Windows NT: `dir`

4. Return to your home directory:
 UNIX: `cd`
 Windows NT: `cd home-dir`
 List the directory contents to verify that you are back in your home directory.

5. Change to the workshop subdirectory again.

6. The * is a wildcard character and can be used to do a partial listing. For example, list only Abaqus input files by typing
 UNIX: `ls *.inp`
 Windows NT: `dir *.inp`
 (Be careful when using `cp` and `mv` since UNIX will overwrite existing files without warning.)

Working with files

Use one of these files, `filename.inp`, to perform the following tasks:

1. Copy `filename.inp` to a file with the name `newcopy.inp` by typing
 UNIX: `cp filename.inp newcopy.inp`
 Windows NT: `copy filename.inp newcopy.inp`

2. Rename (or move) this new file to `newname.inp` by typing
 UNIX: `mv newcopy.inp newname.inp`
 Windows NT: `rename newcopy.inp newname.inp`
3. Delete this file by typing
 UNIX: `rm newname.inp`
 Windows NT: `erase newname.inp`
4. View the contents of the files `filename.inp` by typing
 UNIX: `more filename.inp`
 Windows NT: `type filename.inp | more`
 This step will scroll through the file one page at a time.

Now you are ready to start the workshops.
Notes
Workshop 1

Unsteady flow across a circular cylinder

Introduction

The phenomenon of vortex shedding is important in engineering applications such as heat exchangers, nuclear reactor fuel rod assemblies, suspension bridge and other numerous applications. For flow passing over a stationary cylinder, experimental observations and numerical predictions have shown that a vortex sheet in the wake of the cylinder is formed which induces unsteady lift and drag forces on the cylinder. The unsteadiness in the fluid forces can induce vibrations on structures which need to be considered during their design.

In this workshop, we analyze the unsteady flow across a circular cylinder at a Reynolds number of 100. This classical problem forms the basis of many engineering problems where both the vortex generation as well as vortex-induced vibrations need to be considered. Three different cases are presented in this workshop:

- **Case 1**: Unsteady flow across a stationary circular cylinder.
- **Case 2**: Unsteady flow across an oscillating circular cylinder where the cylinder oscillation is prescribed.
- **Case 3**: Unsteady flow across a spring-loaded rigid cylinder where the cylinder oscillates due to its interaction with the fluid.

The first two cases can be completely modeled within Abaqus/CFD. Modeling unsteady flow over an oscillating cylinder requires invoking the arbitrary Lagrangian-Eulerian (ALE) methodology within Abaqus/CFD where the mesh is deformed to accommodate the boundary displacements. The third case is an example of fluid-structure interaction (FSI) where oscillations of the spring-loaded cylinder occur due to its interaction with the fluid. Modeling this phenomenon requires modeling the spring-loaded cylinder in Abaqus/Standard or Abaqus/Explicit and modeling the fluid flow in Abaqus/CFD and coupling the distinct physical fields through FSI.

The CFD models are set up such that the flow Reynolds number based on the cylinder’s diameter ($\rho Vd/\mu$) is equal to 100.
Fluid model

The Abaqus/CFD model representing the fluid domain is shown in Figure W1–1. The fluid model used in the three cases is the same. The diameter of the cylinder is 0.1 m. The computational model dimensions have been chosen such that the inlet, outlet and far-field boundaries are far enough from cylinder’s surface to avoid any boundary effects. The inlet is placed 4 diameters away from cylinder’s center while the outlet is 12 diameters away. The far-field boundaries are each placed 4 diameters away from the cylinder center.

We will model the 2D flow across the cylinder. Since Abaqus/CFD only offers a 3D solver, we will model the through-thickness direction with one-element and impose appropriate symmetry boundary conditions on the faces in the through-thickness direction to recover 2D behavior.

The model consists of 3564 hexahedral fluid elements (FC3D8) with one-element in the through-thickness direction. The CFD mesh used in the current workshop is very coarse and a finer near-wall mesh would be required to resolve flow gradients near the surfaces. However, the mesh used in the cases presented here is adequate to show the development of the vortex sheet in the wake of the cylinder.

The fluid is modeled as an incompressible Newtonian fluid. The properties of the fluid are chosen to achieve a flow Reynolds number of 100 based on cylinder’s diameter and the inlet velocity. The fluid density is chosen to be 1000 kg/m3 and the viscosity is 0.1 Pa·sec. The fluid is assumed to be quiescent and hence, the initial velocity is zero everywhere.

The Abaqus/CFD procedure invokes a transient incompressible laminar flow analysis. Automatic time incrementation based on a fixed Courant-Freidrichs-Lewy (CFL) condition is used.
Preliminaries

1. Enter the working directory for this workshop:
   ```bash
   ../cfd/cylinder
   ```
2. Run the script `ws_cfd_cylinder.py` using the following command:
   ```bash
   abaqus cae startup=ws_cfd_cylinder.py
   ```
 The above command creates an Abaqus/CAE database named `cylinder.cae` in the current directory. The database contains two separate models. The model `stationary` defines the fluid domain while the model `solid` defines the spring-loaded rigid circular cylinder.

Case 1

For unsteady flow across a stationary circular cylinder, the following boundary conditions are applied to the fluid.

Boundary conditions on the fluid

1. Inlet: An inlet velocity of 0.1 m/sec is assumed.
2. Outlet: An outlet boundary condition is specified with the fluid pressure set to zero.
3. Cylinder surface: A no-slip/no-penetration wall boundary condition is applied at the cylinder surface. All velocity components are set equal to zero.
4. Far-field: The far-field velocity is assumed to be equal to the inlet velocity (i.e., the x-component of velocity is set equal to 0.1 m/sec). This is a reasonable choice if the far-field boundaries are far away from the cylinder surface. Alternatively, a traction-free condition can be enforced (i.e., no BCs prescribed).
5. Symmetry: The velocity normal to the symmetry planes (V_z) is assumed to be zero to constrain the out-of-plane flow.
The boundary conditions for Case 1 are depicted in Figure W1–2.

Case 1 is run for a total simulation time of 120 s which is sufficient to allow for the development of the vortex sheet.

Completing the CFD model

In this section, you will complete the CFD model.

1. In the Model Tree, expand the container under the model stationary.
2. Define the material properties.
 a. In the Model Tree, double-click Materials and create a new material named fluid.
 b. From the General menu of the material editor, select Density and enter a value of 1000 kg/m³.
 c. From the Mechanical menu of the material editor, select Viscosity and enter a value of 0.1 Pa·sec.
3. Define and assign the CFD section.
 a. In the Model Tree, double-click Sections and create a new section named fluid. Note that a homogeneous fluid section is the only choice available for CFD models. Click Continue.
 b. In the Edit Section dialog box that appears, select fluid as the Material and click OK.
 c. Assign the CFD section.
 a. In the Model Tree, expand the Parts container. Expand the container for the part named domain.
 b. Double-click Section Assignments.
 c. In the prompt area, click Sets. In the Region Selection dialog box, choose all and toggle on Highlight selections in viewport to identify the region. Click Continue.
4. Define an incompressible laminar flow analysis step.
 a. In the Model Tree, double-click **Steps**.
 b. In the **Create Step** dialog box accept the default procedure type **Flow** and click **Continue**.
 c. In the step editor, under the **Basic** tab, do the following:
 i. In the **Description** field, enter *Flow around a cylinder*.
 ii. In the **Time period** field, enter 120 sec.
 d. In the step editor, under the **Incrementation** tab, accept all default settings. An initial time increment of 0.01 sec and the automatic time incrementation strategy based on a fixed CFL number of 0.45 is used.
 e. In the step editor, under the **Solvers** tab, accept the default settings on the **Momentum Equation**, **Pressure Equation** and **Transport Equation** tabs.
 f. In the step editor, under the **Turbulence** tab, accept the default setting of **None** under **Turbulence Model**.

5. Define output requests.
 a. In the Model Tree, expand the **Field Output Requests** container.
 Note that a default field output request named **F-Output-1** was automatically created at the time the step was created.
 b. Double-click **F-Output-1**. Note that the output is requested at 20 evenly-spaced time intervals. Change the number of time intervals to 100.
 c. Expand the output variable identifier containers and toggle on the following output variables: **V**, **PRESSURE**, **DIV**, **HELICITY**, and **VORTICITY**.

6. Define boundary conditions.
 a. Define a no-slip/no-penetration boundary condition at the cylinder surface.
 i. In the Model Tree, double-click **BCs**.
 ii. Name the boundary condition **noSlip** and select **Step-1** as the step.
 iii. Select **Fluid** as the category and **Fluid wall condition** as the type.
 iv. Select **domain-1.cylinder** as the surface to which the boundary condition will be applied.
 v. Select **No slip** as the condition.
 b. Define an inlet boundary condition at the inlet surface.
 i. In the Model Tree, double-click **BCs**.
 ii. Name the boundary condition **inlet** and select **Step-1** as the step.
iii. Select **Fluid** as the category and **Fluid inlet/outlet** as the type.

iv. Select **domain-1.inlet** as the surface to which the boundary condition will be applied.

v. In the **Momentum** tab, toggle on **Specify** and then select **Velocity**.

vi. Set the \(x\)-velocity \(V_1\) to \(0.1\). Set the \(y\)- and \(z\)-velocity components \(V_2\) and \(V_3\) to \(0\).

c. Define an outlet boundary condition at the outlet surface.

i. In the Model Tree, double-click **BCs**.

ii. Name the boundary condition **outlet** and select **Step-1** as the step.

iii. Select **Fluid** as the category and **Fluid inlet/outlet** as the type.

iv. Select **domain-1.outlet** as the surface to which the boundary condition will be applied.

v. In the **Momentum** tab, toggle on **Specify** and then select **Pressure**.

vi. Set the pressure to \(0\).

d. Define velocity boundary conditions at the far-field surfaces.

i. In the Model Tree, double-click **BCs**.

ii. Name the boundary condition **far field** and select **Step-1** as the step.

iii. Select **Fluid** as the category and **Fluid inlet/outlet** as the type.

iv. Select **domain-1.farfield** as the surface to which the boundary condition will be applied.

v. In the **Momentum** tab, toggle on **Specify** and then select **Velocity**.

vi. Set the \(x\)-velocity \(V_1\) to \(0.1\). Set the \(y\)- and \(z\)-velocity components \(V_2\) and \(V_3\) to \(0\).

e. Define velocity boundary conditions at the symmetry planes.

i. In the Model Tree, double-click **BCs**.

ii. Name the boundary condition **symm** and select **Step-1** as the step.

iii. Select **Fluid** as the category and **Fluid inlet/outlet** as the type.

iv. Select **domain-1.symm** as the surface to which the boundary condition will be applied.

v. In the **Momentum** tab, toggle on **Specify** and then select **Velocity**.

vi. Set the \(z\)-velocity \(V_3\) to \(0\). Leave the \(x\)- and \(y\)-velocity components unspecified.

This completes the CFD model set up for Case 1.
Creating a CFD analysis job

1. In the Model Tree, expand the **Analysis** container.
2. Double-click **Jobs**.
3. In the **Create Job** dialog box, select the model **stationary** and name the job **stationary-flow**.

Running the CFD analysis

Now that the model set up is complete, run the CFD analysis job. The job can be launched from within Abaqus/CAE as follows: Click mouse-button 3 on the CFD analysis job name and select **Submit** from the menu that appears.

Monitoring the CFD analysis

While the job is running, you can monitor its progress.

1. Click mouse-button 3 on the CFD analysis job name and select **Monitor** from the menu that appears.
2. The job monitor appears. Note that time incrementation information, divergence (RMS) and kinetic energy is updated every time increment.

Viewing the results

Once the job completes, do the following.

1. Click mouse-button 3 on the CFD analysis job name and select **Results** from the menu that appears.
 The output database file **stationary-flow.odb** opens in the Visualization module.
2. Create pressure and velocity contour plots and a pressure line plot.
 a. Click to set the view.
 b. In the toolbox, click , to create a contour plot (alternatively select **Plot→Contours→On Undeformed Shape**).
 c. From the main menu bar, select **Result→Field Output**. In the **Field Output** dialog box, select **PRESSURE** as the output variable and click **OK**.
 Tip: You may also select the variable from the **Field Output** toolbar.
 d. In the toolbox, click to open the **Common Plot Options** dialog box. Toggle on **Feature edges** for the visible edges and click **OK**. This turns off the mesh feature lines in the model.
 e. In the toolbox, click to open the **Contour Plot Options** dialog box. Toggle on **Continuous** under **Contour Intervals** and click **Apply**. This creates a smooth pressure contour plot, as shown in Figure W1–3 (left).
f. In the **Contour Plot Options** dialog box, toggle on **Line** under **Contour Type**. Move the **Discrete** slider bar under **Contour Intervals** to **24** and click **Apply**. This creates a line plot as shown in Figure W1–4.

g. Using the **Field Output** toolbar, select **V** as the output variable to plot. Reset the contour plot options to their default settings with the exception of the **Continuous** contour intervals. A contour plot of the velocity appears as shown in Figure W1–3 (right).

h. In the toolbox, click to create a time history animation. Select an output variable (velocity, pressure, etc.) to animate the results.

3. Create a pressure isosurface plot.
 a. Using the **Field Output** toolbar, select **PRESSURE** as the output variable to plot.
 c. In the **Contour Plot Options** dialog box, toggle on **Isosurface** under **Contour Type**. Set the position of the **Discrete** slider bar to **24** and click **OK**. Adjust the view to more clearly see the isosurfaces, as shown in Figure W1–5.
Case 2

Unsteady flow across an oscillating circular cylinder requires prescribing the cylinder’s oscillation as a function of time. Additionally, since ALE and mesh deformation will be activated to accommodate the displacement of the cylinder, appropriate boundary conditions are required for the mesh deformation solution. The following modifications to the boundary conditions are required.

Boundary conditions on the fluid

1. Cylinder surface: A no-slip/no-penetration wall boundary condition requires that the fluid velocity at the wall remain equal to the cylinder’s velocity. The following time-dependent velocity is prescribed using an amplitude definition:

\[V_x = \frac{2\pi A_o}{T} \cos\left(\frac{2\pi t}{T}\right) \]

Boundary conditions on the mesh

1. Cylinder surface: Since the velocity of the cylinder has been prescribed, the displacement of the cylinder is also known. The mesh displacement at the cylinder surface is hence known and will have to be specified. The following time-dependent mesh displacement is prescribed using an amplitude definition:

\[U_x = A_o \sin\left(\frac{2\pi t}{T}\right) \]

It should be noted that the mesh displacement at the cylinder surface is not independent but is kinematically related to the cylinder’s velocity (and hence the fluid velocity).

2. Inlet, Outlet and Far-field: The mesh is fixed by prescribing zero-valued mesh displacement boundary conditions \((U_x = U_y = U_z = 0)\).
3. Symmetry: The mesh motion normal to the symmetry planes is constrained by prescribing $U_z = 0$.

The boundary conditions for Case 2 are depicted in Figure W1–6.

![Boundary Conditions Diagram]

Figure W1–6 Boundary conditions for the CFD model for Case 2

Case 2 is run for a total of 4 s which represents two cycles of prescribed oscillation.

Completing the CFD model

In this section, you will complete the CFD model.

1. In the Model Tree, click mouse button 3 on the model named **stationary**. From the menu that appears, select **Copy Model**. Name the new model **oscillating**.

2. In the Model Tree, expand the container under the model **oscillating**.

3. Modify the CFD analysis step.
 a. Expand the **Steps** container and double-click **Step-1**.
 b. In the **Basic** tabbed page of the step editor:
 i. Modify the description to read **Flow around an oscillating cylinder**.
 ii. Set the time period of the step to 4 sec.

2. Modify the output requests.
 a. In the Model Tree, expand the **Field Output Requests** container.
 b. Double-click **F-Output-1**. Ensure that the mesh displacement output U is turned on. This variable is required to contour the mesh displacements.
 c. Select **Every x units of time** as the output frequency option and enter 0.1 sec as the value of x.

© Dassault Systèmes, 2010 Introduction to Abaqus/CFD
3. Create amplitude curves to define the time-dependent displacement and velocity.
 a. In the Model Tree, double-click **Amplitudes**.
 b. Name the amplitude curve **disp**.
 c. Select **Periodic** as the type.
 d. Accept **Step time** as the time span.
 e. Enter π for the **Circular frequency**, 0 for the **Starting time** and 0 for the **Initial amplitude**. Enter 0 for **A** and 1 for **B**.
 f. Repeat the previous steps to define a periodic amplitude curve named **vel**. Enter π for the **Circular frequency**, 0 for the **Starting time** and 0 for the **Initial amplitude**. Enter π for **A** and 0 for **B**.

4. Modify the fluid boundary conditions.
 a. Modify the no-slip/no-penetration boundary condition at cylinder surface.
 i. In the Model Tree, expand the **BCs** container.
 ii. Click mouse button 3 on the boundary condition named **noSlip** and select **Delete** from the menu that appears.
 This deletes the boundary condition on cylinder surface.
 iii. In the Model Tree, double-click **BCs** to create a new boundary condition named **wall**.
 iv. Select **Fluid** as the category and **Fluid wall condition** as the type.
 v. Select domain-1.cylinder as the surface to which the boundary condition will be applied.
 vi. Select **Shear** as the condition.
 vii. Set the x-velocity $V1$ to 0.05. Set the y- and z-velocity components $V2$ and $V3$ to 0.
 viii. Select **vel** as the amplitude curve.

5. Create boundary conditions for the mesh motion.
 a. Define the fixed mesh condition at the inlet, outlet, and far-field boundaries.
 i. In the Model Tree, double-click **BCs** to create a new boundary condition named **mesh-fixed**.
 ii. Select **Mechanical** as the category and **Displacement/Rotation** as the type.
 iii. Select domain-1.fixed as the set to which the boundary condition will be applied.
 iv. Set $U1$, $U2$, and $U3$ to 0.
 b. Define the symmetry condition to constrain the motion of the mesh in the through-thickness direction.
i. In the Model Tree, double-click **BCs** to create a new boundary condition named `mesh-symm`.

ii. Select **Mechanical** as the category and **Displacement/Rotation** as the type.

iii. Select `domain-1.symm` as the set to which the boundary condition will be applied.

iv. Set U_3 to 0.

c. Specify the mesh displacement boundary condition on the cylinder surface.

i. In the Model Tree, double-click **BCs** to create a new boundary condition named `mesh-wall`.

ii. Select **Mechanical** as the category and **Displacement/Rotation** as the type.

iii. Select `domain-1.cylinder` as the set to which the boundary condition will be applied.

iv. Set U_1 to 0.05 and U_2 and U_3 to 0.

v. Select `disp` as the amplitude curve.

This completes the CFD model set up for Case 2.

Creating a CFD analysis job

1. In the Model Tree, expand the **Analysis** container.

2. Double-click **Jobs**.

3. In the Create Job dialog box, select the model **stationary** and name the job `oscillating-flow`.

Running the CFD analysis

Now that the model set up is complete, run the CFD analysis job. The job can be launched from within Abaqus/CAE as follows: Click mouse-button 3 on the CFD analysis job name and select **Submit** from the menu that appears.

Monitoring the CFD analysis

While the job is running, you can monitor its progress.

1. Click mouse-button 3 on the CFD analysis job name and select **Monitor** from the menu that appears.

2. The job monitor appears. Note that time incrementation information, divergence (RMS) and kinetic energy is updated every time increment.

Viewing the results

Once the job completes, do the following.

1. Click mouse-button 3 on the CFD analysis job name and select **Results** from the menu that appears.
The output database file oscillating-flow.odb opens in the Visualization module.

2. Repeat the steps described earlier to create contour plots for pressure and velocity (shown in Figure W1–7).

3. Plot the mesh displacements at various times (as shown in Figure W1–8).

![Figure W1–7 Pressure and velocity contour plot for Case 2 at time = 4 sec](image1)

![Figure W1–8 Mesh displacement contour plots for Case 2 at time = approximately 1, 2, 3, and 4 seconds](image2)

STOP!

Continue with the remainder of this workshop after the completion of Lecture 6.
Case 3

Unsteady flow across a spring-loaded circular cylinder requires co-simulation with Abaqus/Standard or Abaqus/Explicit. In this case the spring-loaded cylinder will be modeled with Abaqus/Standard. The boundary conditions required on the fluid and the mesh for the CFD model remain the same as in Case 2 except that the following boundary conditions need to be suppressed:

Boundary conditions on the fluid

1. Cylinder surface: The no-slip/no-penetration wall boundary condition on the cylinder surface is suppressed. The fluid velocity will be dictated by the coupled solution.

Boundary conditions on the mesh

1. Cylinder surface: The mesh displacement BC at the cylinder surface is suppressed. This displacement will be dictated by the coupled solution.

The boundary conditions for Case 3 are depicted in Figure W1–9.

The CFD model includes a surface definition representing the region of the fluid which interacts with the cylinder surface. It will be used to define the co-simulation interaction with the Abaqus/Standard model.
Structural model

The Abaqus/Standard model of the spring-loaded cylinder is shown in Figure W1–10.

The structural model in Abaqus/Standard is comprised of first-order hexahedral stress/displacement elements (C3D8R). A total of 57 elements are used to define the cylinder. A density of 8000 kg/m³, Young’s modulus of 200 GPa, and Poisson’s ratio of 0.3 are used to define the cylinder’s material properties.

A rigid-body constraint has been applied to model the cylinder as a rigid body. The cylinder is connected to a linear spring. The spring is modeled in Abaqus/Standard as a connector with axial behavior. A spring stiffness of 1 N/m has been specified. The spring stiffness is chosen to illustrate the coupled physics and allow for appreciable displacement of the cylinder (~20% of the cylinder’s diameter).

The cylinder’s surface interacts with the surrounding fluid and hence it is used to define the co-simulation interaction with the Abaqus/CFD model.

The Abaqus/Standard procedure invokes an implicit dynamic analysis step. An initial time increment of 0.01 s is used; however, the time increment can change depending on whether the structural or CFD model is dictating the time increment size. The built-in time incrementation strategy is used where the co-simulation coupling time is chosen as the minimum of the time increments dictated by the structural and CFD models. The total simulation time is chosen to be 25 s.
Completing the CFD model

In this section, you will complete the CFD model.

1. In the Model Tree, click mouse button 3 on the model named oscillating. From the menu that appears, select Copy Model. Name the new model fluid.

2. In the Model Tree, expand the container under the model fluid.

3. Modify the CFD analysis step.
 a. Expand the Steps container and double-click Step-1.
 b. In the Basic tabbed page of the step editor:
 i. Modify the description to read Flow around a spring-loaded cylinder.
 ii. Set the time period of the step to 25 sec.

4. Modify the output requests.
 a. In the Model Tree, expand the Field Output Requests container.
 b. Double-click F-Output-1.
 c. Set the output frequency to 1 sec.

5. Modify the fluid boundary conditions.
 a. In the Model Tree, expand the BCs container.
 b. Click mouse button 3 on the boundary condition named wall and select Delete from the menu that appears.
 This deletes the fluid velocity boundary condition on the cylinder surface.

6. Modify the mesh boundary conditions.
 a. In the BCs container, click mouse button 3 on the boundary condition named mesh-wall and select Delete from the menu that appears.
 This deletes the mesh displacement boundary condition on the cylinder surface.

7. Define the FSI interaction.
 a. In the Model Tree, double-click Interactions.
 b. Name the interaction fsi.
 c. Select Step-1 as the step in which it will be defined and accept Fluid-Structure Co-simulation boundary as the type.
 d. Select domain-1.cylinder as the surface to which the interaction will be applied.
Completing the structural model

In this section, you will complete the structural model. The model is complete with the exception of the FSI interaction.

1. In the Model Tree, expand the container under the model solid.
2. Define the FSI interaction.
 a. In the Model Tree, double-click Interactions.
 b. Name the interaction fsi.
 c. Select vortex_vibrations as the step in which it will be defined and Fluid-Structure Co-simulation boundary as the type.
 d. Select solidCylinder-1.cylinder as the surface to which the interaction will be applied.

Creating a co-execution analysis

In order to perform the fluid-structure interaction analysis, the Abaqus/Standard and Abaqus/CFD jobs need to execute together. A co-simulation is performed where the two solvers exchange information at each co-simulation target time. The co-simulation target time is automatically chosen as the minimum of the time increments required by the structural and CFD solvers. In order to facilitate the co-simulation of the two analyses, the co-execution job procedure is used. A co-execution job creates two analysis jobs and runs them simultaneously. It also automatically provides the driver options needed for communication between the two analysis jobs.

1. In the Model Tree, expand the Analysis container.
2. Double-click Co-executions and create a co-execution named fsi_cylinder.
3. In the Edit Co-execution dialog box:
 a. Select solid as the first model. Change the job name to fsi-solid.
 b. Select fluid as the second model. Change the default job name to fsi-fluid.
 c. Click OK.

In the Model Tree, expand the Co-executions container and then expand the fsi_cylinder container. Expand the Jobs container under fsi_cylinder.

Note that two analyses jobs have been created – one representing the Abaqus/Standard structural model and the other representing the Abaqus/CFD model.

Running the co-simulation analysis

Launch the co-execution job from within Abaqus/CAE.

1. Click mouse button 3 on the co-execution job fsi_cylinder.
2. From the menu that appears, select Submit.
 This launches the co-execution job. Both the Abaqus/Standard and Abaqus/CFD jobs will be launched.
Monitoring the co-execution analysis

While the co-execution is running, you can monitor its progress.
1. Click mouse-button 3 on the CFD analysis job name and select **Monitor** from the menu that appears.
2. The job monitor appears. Note that time incrementation information, divergence (RMS) and kinetic energy is updated every time increment.

Viewing the results

Once the co-execution completes, do the following:
1. Click mouse button 3 on the co-execution named **fsi_cylinder**.
2. From the menu that appears, select **Results**.
 The output database files **fsi-solid.odb** and **fsi-fluid.odb** are opened simultaneously in the Visualization module and are overlaid in the viewport.
3. Toggle off the overlay plot option in the toolbox.

Make the output database file **fsi-solid.odb** current.
1. From the main menu bar, select **Result→History Output**.
2. In the **History Output** dialog box, select **Spatial displacement: U1 PI: rootAssembly Node 1 in NSET REFPOINT** and click **Plot**. This creates a history plot of the cylinder’s displacement (as shown in Figure W1–11).

Make the output database file **fsi-fluid.odb** current.
1. Create a contour plot of vorticity at time = 25 sec, as shown in Figure W1–12.
2. Also contour the pressure, velocity, mesh displacements, etc.

![Figure W1–11 Cylinder’s displacement for Case 3](image-url)
Figure W1–12 Vorticity plot for Case 3 at time = 25 sec

Note: A script that creates the complete model described in these instructions is available for your convenience. Run this script if you encounter difficulties following the instructions outlined here or if you wish to check your work. The script is named

ws_cfd_cylinder_answer.py

and is available using the Abaqus fetch utility.
Notes
Notes
Workshop 2

Heat transfer analysis of a component-mounted electronic circuit board

Introduction

This workshop considers the transient conjugate heat transfer between a single printed circuit board (PCB)–mounted electronic component and the ambient air. The component is subjected to passive power dissipation that results in the transfer of heat both within the component and the PCB due to conduction. Furthermore, the heated surfaces of the component and the PCB induce a temperature-dependent density differential in the surrounding air, thereby setting up a buoyancy-driven natural convection process external to the surface. Heat is thus transferred from the component and PCB surfaces to the ambient air through this convection process. Understanding the resulting conduction-convection conjugate heat transfer phenomenon allows more accurate damage estimation and life predictions for electronic components.

Heat transfer within the PCB and the electronic component is modeled in Abaqus/Standard using the heat transfer analysis procedure. The buoyancy-driven natural convection process in the surrounding air is modeled using Abaqus/CFD. Two models representing the solid and the fluid domains are created for the respective solvers in Abaqus/CAE. The models are defined in a CGS system of units.

Structural model

The Abaqus/Standard model of the PCB and the electronic component is shown in Figure W2–1. The PCB dimensions are 7.8 × 11.6 × 0.16 cm. The mounted electronic component consists of a 3 × 3 × 0.7 cm encapsulant that encapsulates a heat slug of size 1.8 × 1.8 × 0.3 cm mounted atop a die of dimensions 0.75 × 0.75 × 0.2 cm. The cross-sectional view of the assembled package is shown in Figure W2–2.

Various constituents of the PCB-component package and their material properties are listed in Table W2–1. The density, specific heat, and thermal conductivity properties have been predefined.
Figure W2–1 Component-mounted electronic circuit board

Figure W2–2 Cross-sectional view of the electronic package indicating the different material constituents of the electronic component and the PCB

<table>
<thead>
<tr>
<th></th>
<th>Density (g/cm^3)</th>
<th>Specific heat (erg/g/K)</th>
<th>Thermal conductivity (erg/cm/sec/K)</th>
<th>Thermal expansion ($1/\text{K}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB substrate</td>
<td>8.95</td>
<td>1×10^7</td>
<td>1.925×10^6</td>
<td>1.6×10^{-5}</td>
</tr>
<tr>
<td>Encapsulant</td>
<td>1.82</td>
<td>8.82×10^6</td>
<td>6.3×10^4</td>
<td>1.9×10^{-5}</td>
</tr>
<tr>
<td>Die</td>
<td>2.33</td>
<td>7.12×10^6</td>
<td>1.3×10^7</td>
<td>3.3×10^{-6}</td>
</tr>
<tr>
<td>Heat slug</td>
<td>8.94</td>
<td>3.85×10^4</td>
<td>3.98×10^5</td>
<td>3.3×10^{-6}</td>
</tr>
</tbody>
</table>

Table W2–1 Material properties of various constituents of the PCB-component package
The heat transfer model in Abaqus/Standard is comprised of first-order hexahedral thermal-diffusion elements (DC3D8). Different section properties are assigned with appropriate material choices for elements representing the various constituents of the PCB-component package. A total of 468 elements are used to define the heat transfer model.

The initial temperature of the assembled electronic package is 293 K.

The electronic component of the assembled package is subjected to passive power dissipation corresponding to a specified body heat flux of 5×10^6 erg/sec/cm3.

The model contains a surface named CIRCUIT-BOARD-1.FSI-SURF comprising the exterior surface of the PCB and electronic component. The exterior surface interacts with the surrounding air and hence will be used to define the co-simulation interaction definition with the Abaqus/CFD model.

The Abaqus/Standard procedure invokes a transient heat transfer analysis. An initial time increment is 0.01 s is used; however, the time increment can change during the course of the analysis depending on the structural and fluid response. The built-in time incrementation strategy is used for co-simulation; the co-simulation coupling time is chosen as the minimum of the time increments dictated by the structural and CFD solvers. The total simulation time is chosen to be 15 s. While a longer analysis time is required to reach steady-state conditions, it is sufficient to illustrate the main concepts of the workshop.

Fluid model

The Abaqus/CFD model representing the surrounding air is shown in Figure W2–3.
The size of the CFD computational domain that encloses the PCB-component assembly is chosen to be $27.8 \times 20 \times 12.56$ cm. With these dimensions the far-field boundaries are far enough away to not affect the flow behavior close to the PCB-component assembly.

Air is modeled as an incompressible Newtonian fluid. The properties of air are listed in Table W2–2. The thermal expansion coefficient for air is defined to enable thermal-momentum coupling due to buoyancy-driven natural convection flow. The heated PCB-component surface induces a temperature-dependent density differential in the surrounding air. This is modeled within the incompressible flow solver using a Boussinesq approximation. The source term in Navier-Stokes equation due to changes in density and gravity is linearized and the density-differential is assumed to be proportional to the temperature-differential and gravity.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm^3)</td>
<td>1.127×10^{-3}</td>
</tr>
<tr>
<td>Specific heat (erg/g/K)</td>
<td>1.0064×10^{7}</td>
</tr>
<tr>
<td>Thermal conductivity (erg/cm/sec/K)</td>
<td>2710</td>
</tr>
<tr>
<td>Thermal expansion (/K)</td>
<td>3.43×10^{-3}</td>
</tr>
<tr>
<td>Viscosity (Poise)</td>
<td>1.983×10^{-4}</td>
</tr>
</tbody>
</table>

Table W2–2 Properties of air

The CFD model consists of 58892 hexahedral fluid elements (FC3D8). This mesh is relatively coarse (a finer near-wall mesh would be required to resolve flow gradients near the surfaces).

The initial temperature of the air is 293 K. The fluid is assumed to be quiescent and hence, the initial velocity is zero everywhere.

The CFD boundary conditions are depicted in Figure W2–3. The following boundary conditions are applied:

1. The bottom surface of the fluid domain is assumed to be a rigid floor, and an adiabatic wall condition is assumed there. An adiabatic condition is the default do-nothing boundary condition for the fluid model so it need not be specified explicitly. Also, a no-slip/no-penetration wall boundary condition is applied at the bottom surface.

2. A no-slip/no-penetration wall boundary condition is applied at the surface representing the skin of the PCB-component assembly.

3. At the top surface, an outlet boundary condition is specified with the fluid pressure set to zero.

4. For all the other boundaries, free stream conditions are assumed for both the fluid velocity and temperature. This is the default do-nothing boundary condition for the fluid model so it need not be specified explicitly.
A gravity load is applied in the negative y-direction (see Figure W2–3) to activate buoyancy-driven natural convection heat transfer.

The CFD model also consists of a surface named **BOUNDINGBOX-1.CIRCUIT_BOARD_FSI** which represents the skin of the PCB-component surface. This surface interacts with the PCB-component assembly and hence will be used to define the interaction with the Abaqus/Standard model.

The Abaqus/CFD procedure invokes a transient incompressible laminar flow analysis coupled with the energy equation. Automatic time incrementation based on a fixed Courant-Friedrichs-Lewy (CFL) condition is used.

Preliminaries

1. Enter the working directory for this workshop:

   ```bash
  ../cfd/cboard
   ```

2. Run the script **ws_cfd_cboard.py** using the following command:

   ```bash
   abaqus cae startup=ws_cfd_cboard.py
   ```

 The above command creates an Abaqus/CAE database named **cboard.cae** in the current directory. The database contains two separate models. The model **fluid** defines the fluid domain while the model **thermal** defines the PCB-component assembly.

Completing the CFD model

In this section, you will complete the CFD model by defining the following:

- Material properties
- Section properties
- Incompressible laminar flow analysis step with the energy equation activated
- Output requests
- Boundary conditions
- Gravity load
- Initial conditions
- FSI definition
1. In the Model Tree, expand the container under the model **fluid**.

2. Define the material properties.
 a. In the Model Tree, double-click **Materials** and create a new material named **air**.
 b. From the **General** menu of the material editor, select **Density** and enter a value of \(1.127 \times 10^{-3}\) g/cm\(^3\).
 c. From the **Thermal** menu of the material editor, select **Conductivity** and enter a value of \(2710\) g/cm\(^3\).
 d. From the **Thermal** menu of the material editor, select **Specific Heat**. Choose **Constant Pressure** as the type and enter a value of \(1.0064 \times 10^7\) g/cm\(^3\).
 e. From the **Mechanical** menu of the material editor, select **Expansion** and enter a value of \(3.43 \times 10^{-3}\) g/cm\(^3\).
 f. From the **Mechanical** menu of the material editor, select **Viscosity** and enter a value of \(1.983 \times 10^{-4}\) g/cm\(^3\).

3. Define and assign the CFD section.
 a. In the Model Tree, double-click **Sections** and create a new section named **air**. Note that a homogeneous fluid section is the only choice available for CFD models. Click **Continue**.
 b. In the **Edit Section** dialog box that appears, select **air** as the **Material** and click **OK**.
 c. Assign the CFD section.
 a. In the Model Tree, expand the **Parts** container. Expand the container for the part named **BOUNDINGBOX**.
 b. Double-click **Section Assignments**.
 c. In the prompt area, click **Sets**. In the **Region Selection** dialog box choose **ALL**. Click **Continue**.

4. Define an incompressible laminar flow analysis step.
 a. In the Model Tree, double-click **Steps**.
 b. In the **Create Step** dialog box, name the step **NatConv** and accept the default procedure type **Flow**. Click **Continue**.
 c. In the step editor, under the **Basic** tab, do the following:
 i. In the **Description** field, enter **Buoyancy Driven Natural Convection**.
 ii. In the **Time period** field, enter 15 sec.
 iii. Toggle on **Temperature** for the **Energy equation**.
d. In the step editor, under the **Incrementation** tab, accept all default settings. An initial time increment of 0.01 sec and the automatic time incrementation strategy based on a fixed CFL number of 0.45 is used.

e. In the step editor, under the **Solvers** tab, accept the default settings on the **Momentum Equation**, **Pressure Equation** and **Transport Equation** tabs.

f. In the step editor, under the **Turbulence** tab, accept the default setting of **None** under **Turbulence Model**.

5. Define output requests.
 a. In the Model Tree, expand the **Field Output Requests** container.
 Note that a default field output request named **F-Output-1** was automatically created at the time the step was created.
 b. Double-click **F-Output-1**. Note that the output is requested at 20 evenly-spaced time intervals. Accept the default values.

6. Define boundary conditions.
 a. Define a no-slip/no-penetration boundary condition at the bottom surface of the fluid domain.
 i. In the Model Tree, double-click **BCs**.
 ii. Name the boundary condition **no-slip-bot** and select **NatConv** as the step.
 iii. Select **Fluid** as the category and **Fluid wall condition** as the type.
 iv. Select **BOUNDINGBOX-1.BOTTOM** as the surface to which the boundary condition will be applied.
 Tip: In the **Region Selection** dialog box, toggle on **Highlight selections in viewport** to identify the region.
 v. Select **No slip** as the condition.
 b. Define a no-slip/no-penetration wall boundary condition at the surface representing the skin of the PCB-component assembly.
 i. In the Model Tree, double-click **BCs**.
 ii. Name the boundary condition **no-slip-fsi** and select **NatConv** as the step.
 iii. Select **Fluid** as the category and **Fluid wall condition** as the type.
 iv. Select **BOUNDINGBOX-1.CIRCUIT_BOARD_FSI** as the surface to which the boundary condition will be applied.
 v. Select **No slip** as the condition.
c. Define an outlet boundary condition at the top surface of the CFD computational domain.
 i. In the Model Tree, double-click **BCs**.
 ii. Name the boundary condition **outlet** and select **NatConv** as the step.
 iii. Select **Fluid** as the category and **Fluid inlet/outlet** as the type.
 iv. Select **BOUNDINGBOX-1.TOP** as the surface to which the boundary condition will be applied.
 v. In the **Momentum** tab, toggle on **Specify** and then toggle on **Pressure**.
 vi. Set the pressure to 0.

7. Define the gravity load.
 a. In the Model Tree, double-click **Loads**.
 b. Name the load **gravity** and select **NatConv** as the step.
 c. Select **Mechanical** as the category and **Gravity** as the type.
 d. Accept the default region to which the load will be applied (**Whole Model**).
 e. Enter a value of \(-981\) cm/s\(^2\) for **component 2**.
 This specifies acceleration due to gravity in the global y-direction.

8. Define initial conditions.
 a. In the Model Tree, double-click **Predefined Fields**.
 b. Name the field **initial temperature** and select **Initial** as the step.
 c. Select **Fluid** as the category and **Fluid thermal energy** as the type.
 d. In the predefined field editor, accept the default region to which the initial temperature field will be applied (**Whole Model**).
 e. Enter a value of **293** K as the initial fluid temperature.
 The default initial condition for velocity is zero so we need not define it explicitly.

9. Define the FSI interaction.
 a. In the Model Tree, double-click **Interactions**.
 b. Name the interaction **fsi**.
 c. Select **NatConv** as the step in which it will be defined and accept **Fluid-Structure Co-simulation boundary** as the type.
 d. Select **BOUNDINGBOX-1.CIRCUIT_BOARD_FSI** as the surface to which the interaction will be applied.
Completing the structural model

In this section, you will complete the structural model. The model is largely complete with the exception of the FSI interaction.

1. In the Model Tree, expand the container under the model thermal.
2. Define the FSI interaction.
 a. In the Model Tree, double-click Interactions.
 b. Name the interaction fsi.
 c. Select heat transfer as the step in which it will be defined and Fluid-Structure Co-simulation boundary as the type.
 d. Select CIRCUIT-BOARD-1.FSI_SURF as the surface to which the interaction will be applied.

3. Modify the step time.
 a. In the Model Tree, expand the Steps container.
 b. Double-click heat transfer.
 c. Set the time period for the step to 15 sec. This makes it consistent with the CFD model.

4. Modify the output requests.
 a. In the Model Tree, expand the Field Output Requests container.
 Note that a default field output request named F-Output-1 was automatically created at the time the step was created.
 b. Double-click F-Output-1.
 c. Select Evenly spaced time intervals as the frequency option and enter 20 as the interval size. Accept the default output requests.

The output is requested at approximately the same time intervals in the structural and CFD models. While the structural model writes the output at exact time points, the CFD model writes output at approximate time points.
Creating a co-execution analysis

In order to perform the conjugate heat transfer analysis, the Abaqus/Standard and Abaqus/CFD jobs need to execute together. A co-simulation is performed where the two solvers exchange information at each co-simulation target time. The co-simulation target time is automatically chosen as the minimum of the time increments required by the structural and CFD solvers. In order to facilitate the co-simulation of the two analyses, the co-execution job procedure is used. A co-execution job creates two analysis jobs and runs them simultaneously. It also automatically provides the driver options needed for communication between the two analysis jobs.

1. In the Model Tree, expand the Analysis container.
2. Double-click Co-executions and create a co-execution named fsi_cboard.
3. In the Edit Co-execution dialog box:
 a. Select thermal as the first model.
 b. Select fluid as the second model.
 c. Click OK.

In the Model Tree, expand the Co-executions container and then expand the fsi_cboard container. Expand the Jobs container under fsi_cboard.

Note that two analyses jobs have been created – one representing the Abaqus/Standard structural model and the other representing the Abaqus/CFD model.

Running the co-simulation analysis

Launch the co-execution job from within Abaqus/CAE.
1. Click mouse button 3 on the co-execution job fsi_cboard.
2. From the menu that appears, select Submit.

This launches the co-execution job. Both the Abaqus/Standard and Abaqus/CFD jobs will be launched.

Monitoring the co-execution analysis

While the co-execution is running, you can monitor its progress.
1. Click mouse-button 3 on the CFD analysis job name and select Monitor from the menu that appears.
2. The job monitor appears. Note that time incrementation information, divergence (RMS) and kinetic energy is updated every time increment.

STOP!

Continue with the remainder of this workshop after the completion of the next lecture.
Viewing the results

Once the co-execution completes, do the following:

1. Click mouse button 3 on the co-execution named fsi_cboard.
2. From the menu that appears, select Results.
 The output database files fsi_cboard-thermal.odb and fsi_cboard-fluid.odb are opened simultaneously in the Visualization module and are overlaid in the viewport.
3. Toggle off the overlay plot option in the toolbox.

Make the output database file fsi_cboard-fluid.odb current.
1. Create a temperature contour plot for the surrounding air on cut-planes perpendicular to the x- and y-axes and cutting the component through the center.
 a. In the toolbox, click to create a contour plot (alternatively select Plot→Contours→On Undeformed Shape).
 b. From the main menu bar, select Result→Field Output. In the Field Output dialog box, select TEMP as the output variable and click OK. Tip: You may also select the variable from the Field Output toolbar.
 c. In the toolbox, click to open the Common Plot Options dialog box. Toggle on Feature edges for the visible edges and click OK. This turns off the mesh feature lines in the model.
 d. In the toolbox, click to open the Contour Plot Options dialog box. Toggle on Continuous under Contour Intervals and click OK. This creates a smooth temperature contour plot.
 e. Create two cut-planes.
 i. For the main menu bar, select Tools→View Cut→Manager.
 ii. In the View Cut Manager, toggle on Allow for multiple cuts. This will enable multiple view-cuts.
 iii. Select the X-Plane and enter 43.18 as the Position.
 iv. Select the Y-Plane and enter 5.8 as the Position.
 v. Toggle off the above-cut options (under the column labeled) next to X-Plane and Y-Plane. This only leaves only the on-cut option enabled.
 f. The temperature contour on the two cut-planes appears as shown in Figure W2–4.
2. Create a pressure contour plot for the surrounding air on the two cut-planes.
 a. Using the Field Output toolbar, select **PRESSURE** as the output variable to plot.
 The pressure contour plot on the activate cut-planes appears as shown in Figure W2–5.

3. Create a velocity vector plot for the surrounding air on the two cut-planes.
 a. Using the Field Output toolbar, select **V** as the output variable to plot.
 This creates a velocity contour plot on the cut-planes.
 b. In the toolbox, click ![vector plot icon] to create a vector plot (alternatively select Plot→Symbols→On Undeformed Shape). The plot appears as shown in Figure W2–6.
Make the output database file `fsi_cboard-thermal.odb` current.

1. Create a temperature contour plot for the PCB-component assembly, as shown in Figure W2–7. Also, activate the two cut-planes used earlier (perpendicular to the \(x\)- and \(y\)-axes and cutting the component through the center).

Note: A script that creates the complete model described in these instructions is available for your convenience. Run this script if you encounter difficulties following the instructions outlined here or if you wish to check your work. The script is named `ws_cfd_cboard_answer.py` and is available using the Abaqus fetch utility.
Notes